Water | 2021

Spatial–Temporal Variations of Total Nitrogen and Phosphorus in Poyang, Dongting and Taihu Lakes from Landsat-8 Data

 
 
 
 
 

Abstract


Poyang Lake, Dongting Lake, and Taihu Lake are the largest freshwater lakes in the middle and lower reaches of the Yangtze River, China. In recent years, the eutrophication level of lakes has increased with the development of the social economy and caused many environmental and social problems. The concentrations of total nitrogen (TN) and total phosphorus (TP) are the key indicators of the degree of eutrophication, but the traditional ground monitoring methods are not capable of capturing such parameters in whole lakes with high spatial-temporal resolution. In this paper, empirical models are established and evaluated between the TN and TP and remote sensing spectral factors in the three lakes using Landsat 8 Operational Land Imager (OLI) satellite data and in-situ data. The results show that the inversion accuracy is higher than 75%. The TN and TP concentrations in the three lakes are inversed based on the Google Earth Engine (GEE) platform from 2014 to 2020 and their spatial-temporal variations are analyzed. The results show that the concentrations of TN and TP in Poyang Lake were decreased by 5.99% and 7.13% over 7 years, respectively, and the TN in Dongting Lake was decreased by 5.25% while the TP remained stable. The temporal changes in TN and TP concentrations displayed seasonal variations. A low concentration was observed in summer and high concentrations were in spring and winter. The average concentrations of TN and TP in Taihu Lake were higher than that of the other two lakes. The TP concentration was increased by 17.3% over 7 years, while the TN concentration remained almost stable. The variation in TN in Taihu Lake was the same as the growth cycle of algae, with higher value in spring and winter and lower value in summer, while the concentration of TP was lower in spring and winter and higher in summer. The spatial distribution of TN and TP concentrations in the three major lakes was significantly affected by human activities, and the concentrations of TN and TP were higher in areas near cities and agricultural activities.

Volume None
Pages None
DOI 10.3390/w13121704
Language English
Journal Water

Full Text