Water | 2021

Ferrous Magnetic Nanoparticles for Arsenic Removal from Groundwater

 
 
 
 
 
 

Abstract


Arsenic in water is currently a global concern due to the long-term exposure that could affect human health. In this study, magnetic nanoparticles (MNPs), CoFe2O4, and MnFe2O4 were successfully synthesized and applied to remove arsenic (As) from water. The MNPs were characterized using different techniques, such as scanning electron microscope (SEM), Brunauer–Emmet–Teller (BET), and photoelectron spectroscopy (XPS). The nanoscale size and the specific surface area achieved a fast, selective, and high As adsorption capacity. MNPs have a mesoporous structure with a mean pore diameter of 5 nm and a mean particle size of 30 nm. The adsorption capacity of these MNPs was determined through kinetic and equilibrium experiments, multilayer adsorption that obeyed the Freundlich model equation was observed, and the maximum adsorption capacities reached were 250 mg/g for CoFe2O4 and 230 mg/g for MnFe2O4. Furthermore, MNPs characteristics like regeneration and reuse, several pH tolerances, non-ion interference, and effective As removal from groundwater samples confirms the nanomaterials’ potential for future applications in water treatment systems combined with magnetic separation.

Volume None
Pages None
DOI 10.3390/w13182511
Language English
Journal Water

Full Text