Journal of visualized experiments : JoVE | 2019

Isolation of Specific Neuron Populations from Roundworm Caenorhabditis elegans.

 
 
 

Abstract


During the aging process, many cells accumulate high levels of damage leading to cellular dysfunction, which underlies many geriatric and pathological conditions. Post-mitotic neurons represent a major cell type affected by aging. Although multiple mammalian models of neuronal aging exist, they are challenging and expensive to establish. The roundworm Caenorhabditis elegans is a powerful model to study neuronal aging, as these animals have short lifespan, an available robust genetic toolbox, and well-cataloged nervous system. The method presented herein allows for seamless isolation of specific cells based on the expression of a transgenic green fluorescent protein (GFP). Transgenic animal lines expressing GFP under distinct, cell type-specific promoters are digested to remove the outer cuticle and gently mechanically disrupted to produce slurry containing various cell types. The cells of interest are then separated from non-target cells through fluorescence-activated cell sorting, or by anti-GFP-coupled magnetic beads. The isolated cells can then be cultured for a limited time or immediately used for cell-specific ex vivo analyses such as transcriptional analysis by real time quantitative PCR. Thus, this protocol allows for rapid and robust analysis of cell-specific responses within different neuronal populations in C. elegans.

Volume 150
Pages None
DOI 10.3791/60145
Language English
Journal Journal of visualized experiments : JoVE

Full Text