Journal of visualized experiments : JoVE | 2019

Silencing the Spark: CRISPR/Cas9 Genome Editing in Weakly Electric Fish.

 
 
 
 
 

Abstract


Electroreception and electrogenesis have changed in the evolutionary history of vertebrates. There is a striking degree of convergence in these independently derived phenotypes, which share a common genetic architecture. This is perhaps best exemplified by the numerous convergent features of gymnotiforms and mormyrids, two species-rich teleost clades that produce and detect weak electric fields and are called weakly electric fish. In the 50 years since the discovery that weakly electric fish use electricity to sense their surroundings and communicate, a growing community of scientists has gained tremendous insights into evolution of development, systems and circuits neuroscience, cellular physiology, ecology, evolutionary biology, and behavior. More recently, there has been a proliferation of genomic resources for electric fish. Use of these resources has already facilitated important insights with regards to the connection between genotype and phenotype in these species. A major obstacle to integrating genomics data with phenotypic data of weakly electric fish is a present lack of functional genomics tools. We report here a full protocol for performing CRISPR/Cas9 mutagenesis that utilizes endogenous DNA repair mechanisms in weakly electric fish. We demonstrate that this protocol is equally effective in both the mormyrid species Brienomyrus brachyistius and the gymnotiform Brachyhypopomus gauderio by using CRISPR/Cas9 to target indels and point mutations in the first exon of the sodium channel gene scn4aa. Using this protocol, embryos from both species were obtained and genotyped to confirm that the predicted mutations in the first exon of the sodium channel scn4aa were present. The knock-out success phenotype was confirmed with recordings showing reduced electric organ discharge amplitudes when compared to uninjected size-matched controls.

Volume 152
Pages None
DOI 10.3791/60253
Language English
Journal Journal of visualized experiments : JoVE

Full Text