The Astronomical Journal | 2021

Biases in Orbital Fitting of Directly Imaged Exoplanets with Small Orbital Coverage

 
 
 

Abstract


The eccentricity of a planet’s orbit and the inclination of its orbital plane encode important information about its formation and history. However, exoplanets detected via direct imaging are often only observed over a very small fraction of their period, making it challenging to perform reliable physical inferences given wide, unconstrained posteriors. The aim of this project is to investigate biases (deviation of the median and mode of the posterior from the true values of orbital parameters, and the width and coverage of their credible intervals) in the estimation of orbital parameters of directly imaged exoplanets, particularly their eccentricities, and to define general guidelines to perform better estimations of uncertainty. For this, we constructed various orbits and generated mock data for each spanning ∼0.5% of the orbital period. We used the Orbits For The Impatient algorithm to compute orbit posteriors and compared those to the true values of the orbital parameters. We found that the inclination of the orbital plane is the parameter that most affects our estimations of eccentricity, with orbits that appear near edge on producing eccentricity distributions skewed away from the true values and often bimodal. We also identified a degeneracy between eccentricity and inclination that makes it difficult to distinguish posteriors of face-on, eccentric orbits and edge-on, circular orbits. For the exoplanet-imaging community, we propose practical recommendations, guidelines, and warnings relevant to orbit fitting.

Volume 161
Pages None
DOI 10.3847/1538-3881/abf0a8
Language English
Journal The Astronomical Journal

Full Text