The Astrophysical Journal | 2019

Orion SrcI’s Disk Is Salty

 
 
 
 
 
 

Abstract


We report the detection of NaCl, KCl, and their $^{37}$Cl and $^{41}$K isotopologues toward the disk around Orion SrcI. About 60 transitions of these molecules were identified. This is the first detection of these molecules in the interstellar medium not associated with the ejecta of evolved stars. It is also the first ever detection of the vibrationally excited states of these lines in the ISM above v = 1, with firm detections up to v = 6. The salt emission traces the region just above the continuum disk, possibly forming the base of the outflow. The emission from the vibrationally excited transitions is inconsistent with a single temperature, implying the lines are not in LTE. We examine several possible explanations of the observed high excitation lines, concluding that the vibrational states are most likely to be radiatively excited via rovibrational transitions in the 25-35 {\\mu}m (NaCl) and 35-45 {\\mu}m (KCl) range. We suggest that the molecules are produced by destruction of dust particles. Because these molecules are so rare, they are potentially unique tools for identifying high-mass protostellar disks and measuring the radiation environment around accreting young stars.

Volume 872
Pages 54
DOI 10.3847/1538-4357/aafb71
Language English
Journal The Astrophysical Journal

Full Text