The Astrophysical Journal | 2019

ALMA Reveals Potential Evidence for Spiral Arms, Bars, and Rings in High-redshift Submillimeter Galaxies

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


We present subkiloparsec-scale mapping of the 870 mu m ALMA continuum emission in six luminous (LIR similar to 5 x 10(12 )L(circle dot)) submillimeter galaxies (SMGs) from the ALESS survey of the Extended Chandra Deep Field South. Our high-fidelity 0 .07-resolution imaging (similar to 500 pc) reveals robust evidence for structures with deconvolved sizes of less than or similar to 0.5-1 kpc embedded within (dominant) exponential dust disks. The large-scale morphologies of the structures within some of the galaxies show clear curvature and/or clump-like structures bracketing elongated nuclear emission, suggestive of bars, star-forming rings, and spiral arms. In this interpretation, the ratio of the ring and bar radii (1.9 +/- 0.3) agrees with that measured for such features in local galaxies. These potential spiral/ring/bar structures would be consistent with the idea of tidal disturbances, with their detailed properties implying flat inner rotation curves and Toomre-unstable disks (Q < 1). The inferred one-dimensional velocity dispersions (sigma(r) less than or similar to 70-160 km s(-1)) are marginally consistent with the limits implied if the sizes of the largest structures are comparable to the Jeans length. We create maps of the star formation rate density (Sigma(SFR)) on similar to 500 pc scales and show that the SMGs are able to sustain a given (galaxy-averaged) E-SFR over much larger physical scales than local (ultra)luminous infrared galaxies. However, on 500 pc scales, they do not exceed the Eddington limit set by radiation pressure on dust. If confirmed by kinematics, the potential presence of nonaxisymmetric structures would provide a means for net angular momentum loss and efficient star formation, helping to explain the very high star formation rates measured in SMGs.

Volume 876
Pages 130
DOI 10.3847/1538-4357/ab1846
Language English
Journal The Astrophysical Journal

Full Text