The Astrophysical Journal | 2021

Structure and Evolution of an Inter–Active Region Large-scale Magnetic Flux Rope

 
 
 
 
 

Abstract


Magnetic flux rope (MFR) has been recognized as the key magnetic configuration of solar eruptions. While pre-eruption MFRs within the core of solar active regions (ARs) have been widely studied, those existing between two ARs, i.e., the intermediate ones in weak-field regions, were rarely studied. There are also major eruptions that occurred in such intermediate regions and study of the MFR there will help us understand the physics mechanism underlying the eruptions. Here, with a nonlinear force-free field reconstruction of solar coronal magnetic fields, we tracked the five-day evolution covering the full life of a large-scale inter-AR MFR forming between ARs NOAA 11943 and 11944, which is closely cospatial with a long sigmoidal filament channel and an eruptive X1.2 flare occurring on 2014 January 7. Through topological analysis of the reconstructed 3D magnetic field, it is found that the MFR begins to form early on 2014 January 6; then with its magnetic twist degree continuously increasing for over 30 hr, it becomes highly twisted with field lines winding numbers approaching six turns, which might be the highest twisting degree in extrapolated MFRs that have been reported in the literature. The formation and strength of the MFR are attributed to a continuous sunspot rotation of AR 11944 and flux cancellation between the two ARs. The MFR and its associated filaments exhibit no significant change across the flare time, indicating it is not responsible for the flare eruption. After the flare, the MFR slowly disappears, possibly due to the disturbance by the eruption.

Volume 906
Pages None
DOI 10.3847/1538-4357/abc701
Language English
Journal The Astrophysical Journal

Full Text