The Astrophysical Journal | 2021

Mass and Environment as Drivers of Galaxy Evolution. IV. On the Quenching of Massive Central Disk Galaxies in the Local Universe

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


The phenomenological study of evolving galaxy populations in Peng et al. has shown that star forming galaxies can be quenched by two distinct processes: mass quenching and environment quenching. To explore the mass quenching process in local galaxies, we study the massive central disk galaxies with stellar mass above the Schechter characteristic mass. In Zhang et al., we showed that during the quenching of the massive central disk galaxies as their star formation rate decreases, their molecular gas mass and star formation efficiency drop rapidly but their H i gas mass remains surprisingly constant. To identify the underlying physical mechanisms, in this work we analyze the change during quenching of various structure parameters, bar frequency, and active galactic nucleus (AGN) activity. We find three closely related facts. On average, as star formation rate decreases in these galaxies: (1) they become progressively more compact, indicated by their significantly increasing concentration index, bulge-to-total mass ratio, and central velocity dispersion, which are mainly driven by the growth and compaction of their bulge component; (2) the frequency of barred galaxies increases dramatically, and at a given concentration index the barred galaxies have a significantly higher quiescent fraction than unbarred galaxies, implying that the galactic bar may play an important role in mass quenching; and (3) the “AGN” frequency increases dramatically from 10% on the main sequence to almost 100% for the most quiescent galaxies, which is mainly driven by the sharp increase of LINERs. These observational results lead to a self-consistent picture of how mass quenching operates.

Volume 911
Pages None
DOI 10.3847/1538-4357/abd723
Language English
Journal The Astrophysical Journal

Full Text