The Astrophysical Journal | 2021

Photospheric Radius Expansion and a Double-peaked Type-I X-Ray Burst from GRS 1741.9–2853

 
 
 
 
 
 
 
 
 

Abstract


We present an analysis of two type-I X-ray bursts observed by NuSTAR originating from the very faint transient neutron star (NS) low-mass X-ray binary GRS 1741.9–2853 during a period of outburst in 2020 May. We show that the persistent emission can be modeled as an absorbed, Comptonized blackbody in addition to Fe Kα emission, which can be attributed to relativistic disk reflection. We measure a persistent bolometric, unabsorbed luminosity of Lbol=7.03−0.05+0.04×1036ergs−1 , assuming a distance of 7 kpc, corresponding to an Eddington ratio of 4.5%. This persistent luminosity combined with light-curve analysis leads us to infer that the bursts were the result of pure He burning rather than mixed H/He burning. Time-resolved spectroscopy reveals that the bolometric flux of the first burst exhibits a double-peaked structure, placing the source within a small population of accreting NSs that exhibit multiple-peaked type-I X-ray bursts. We find that the second, brighter burst shows evidence for photospheric radius expansion (PRE) and that at its peak, this PRE event had an unabsorbed bolometric flux of Fpeak=2.94−0.26+0.28×10−8ergcm−2s−1 . This yields a new distance estimate of d = 9.0 ± 0.5 kpc, assuming that this corresponds to the Eddington limit for pure He burning on the surface of a canonical NS. Additionally, we performed a detailed timing analysis that failed to find evidence for quasi-periodic oscillations or burst oscillations, and we place an upper limit of 16% on the rms variability around 589 Hz, the frequency at which oscillations have previously been reported.

Volume 918
Pages None
DOI 10.3847/1538-4357/ac0ef9
Language English
Journal The Astrophysical Journal

Full Text