Subterranean biology | 2021

Refining sampling protocols for cavefishes and cave crayfishes to account for environmental variation

 
 
 
 
 

Abstract


Subterranean habitats represent focal habitats in many conservation strategies; however, these environments are some of the most difficult to sample. New sampling methods, such as environmental DNA (eDNA), show promise to improve stygobiont detection, but sources of sampling bias are poorly understood. Therefore, we determined the factors affecting detection probability using traditional visual surveys and eDNA surveys for both cavefishes and cave crayfishes and demonstrated how detection affects survey efforts for these taxa. We sampled 40 sites (179 visual and 183 eDNA surveys) across the Ozark Highlands ecoregion. We estimated the detection probability of cave crayfishes and cavefishes using both survey methods under varying environmental conditions. The effectiveness of eDNA or visual surveys varied by environmental conditions (i.e., water volume, prevailing substrate, and water velocity) and the target taxa. When sampling in areas with average water velocity, no flow, and coarse substrate, eDNA surveys had a higher detection probability (0.49) than visual surveys (0.35) for cavefishes and visual surveys (0.67) had a higher detection probability than eDNA surveys (0.40) for cave crayfishes. Under the same sampling conditions, 5 visual surveys compared to 10 eDNA surveys would be needed to confidently detect cave Subterranean Biology 39: 79–105 (2021) doi: 10.3897/subtbiol.39.64279 https://subtbiol.pensoft.net Copyright Joshua B. Mouser et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. RESEARCH ARTICLE Subterranean Biology Published by The International Society for Subterranean Biology A peer-reviewed open-access journal

Volume 39
Pages 79-105
DOI 10.3897/SUBTBIOL.39.64279
Language English
Journal Subterranean biology

Full Text