Inverse Problems and Imaging | 2019

On finding a buried obstacle in a layered medium via the time domain enclosure method in the case of possible total reflection phenomena

 
 
 

Abstract


An inverse obstacle problem for the wave governed by the wave equation in a two layered medium is considered under the framework of the time domain enclosure method. The wave is generated by an initial data supported on a closed ball in the upper half-space, and observed on the same ball over a finite time interval. The unknown obstacle is penetrable and embedded in the lower half-space. It is assumed that the propagation speed of the wave in the upper half-space is greater than that of the wave in the lower half-space, which is excluded in the previous study: Ikehata and Kawashita, Inverse Problems and Imaging 12 (2018), no.5, 1173-1198. In the present case, when the reflected waves from the obstacle enter the upper half-space, the total reflection phenomena occur, which give singularities to the integral representation of the fundamental solution for the reduced transmission problem in the background medium. This fact makes the problem more complicated. However, it is shown that these waves do not have any influence on the leading profile of the indicator function of the time domain enclosure method.

Volume 13
Pages 959-981
DOI 10.3934/IPI.2019043
Language English
Journal Inverse Problems and Imaging

Full Text