Materials Science Forum | 2019

Microstructure and Mechanical Properties of Aluminum Alloy/High Strength Steel Double Beam Laser Deep Penetration Welded Joint

 
 
 
 
 
 

Abstract


A new dual beam laser deep penetration welding technology for lap joint of 1.5 mm thick aluminum alloy and high strength steel was explored in this paper, and the effects of three different beam energy ratios (RS=0.25,0.33,0.5) on weld formation, interface microstructure and mechanical properties were studied. The result shows that under certain conditions of other parameters, double beam laser deep penetration welding process can be applied to lap joint of aluminum alloy / high strength steel with good weld shape when RS=0.25,0.33,0.5. As RS increases from 0.25 to 0.5, the penetration of the weld reduces from 575 μm to 424.2μm, the thickness of intermetallic compound (IMC) layer at the interface between aluminum alloy and weld metal reduces from 3.4 μm to 2.5 μm, the average microhardness of the IMC layer decreases from 771.1 HV to 571.9 HV, the mechanical resistance of the joint raises from 95.7N/mm to 115.2N/mm. When RS=0.5, double beam laser deep penetration welding of aluminum alloy / high-strength steel joints has the highest mechanical resistance of joints, because of the relatively good plastic ductility of the joint.

Volume 944
Pages 448 - 457
DOI 10.4028/WWW.SCIENTIFIC.NET/MSF.944.448
Language English
Journal Materials Science Forum

Full Text