Materials Science Forum | 2019

Investigations on Impact Toughness and Microstructure Characteristics of Gas Metal Arc Welded HY-80 Steel Plate

 
 
 

Abstract


HY-80 is the high yield steel that commonly used for naval ship and submarine. Arc welding operations are critical stage in fabrication of this steel. During welding, the problem may occur in the heat affected zone due to the high temperature makes the microstructure suddenly changes. Coarse grain heat affected zone (CGHAZ) develops close to the fusion line, steel become brittle and the impact toughness decrease. This research investigated the microstructure of HY-80 weldment, impact toughness at sub-zero temperatures, and hardness distribution along cross-section of the welded joint. ER100S welding wire, Ar+10%CO2 shielding gas mixture and single V-groove butt joint with an angle of 60° were selected prior to welding. 12 mm thick of HY-80 steel plate that used in this experiment was multipass welded by gas metal arc welding (GMAW). Impact toughness at sub-zero temperature, hardness and microstructure evolutions of base metal (BM), heat affected zone (HAZ) and weld metal (WM) were observed. The result shows at a temperature of-80 °C, the lowest impact toughness was measured at WM (61 J) as compared to fusion line (101 J) and BM (217 J). The hardness measurement shows the maximum hardness was measured in CGHAZ followed WM and BM. Vickers hardness test result of weld joint at bottom area are higher than top area. It may caused of the low heat input of back weld compared to other passes. The lower heat input, cooling rate increased and initiate the formation of hard phase. The microstructure of WM shows acicular ferrites and non-metallic inclusions, these inclusions may deteriorate the impact toughness.

Volume 964
Pages 68 - 79
DOI 10.4028/WWW.SCIENTIFIC.NET/MSF.964.68
Language English
Journal Materials Science Forum

Full Text