Key Engineering Materials | 2021

Synthesis and Studying Induction Heating of Mn1-xZnxFe2O4 (x=0-0.5) Magnetic Nanoparticles for Hyperthermia Treatments

 
 
 
 

Abstract


The recent development of the using the magnetic nanoparticles for hyperthermia treatments emphasizes the needed of smart materials to become a safety for heat therapy. Self-regulate magnetic nanoparticles of MnZnFe2O4 may be proper for thermal treatments. Structure and magnetic properties of the synthesis Mn1-xZnx Fe2O4 with x=0- 0.5 by step 0.1were studied. Superparamagnetic nanoparticles of MnZnFe2O4 were prepared by co-precipitation method, followed that heat treatment in the autoclave reactor. XRD results showed that is difficult to prepare MnZnFe2O4 directly using the co-precipitation method. Preparation method yield nanoparticles with spherical shape and there is a slight change in the particle size distribution, also observed shrinkage occurs in the particle size after heat treatments, the average particle size was estimated about 20nm as confirmed by FESEM images. FTIR spectra of samples showed two distinct absorption peaks in the range ~ 617 – 426 (cm-1) related to stretching vibrations of the (Fe-O) in the tetrahedral and octahedral side respectively. Magnetic measurements were carried out using (VSM), M-H curves indicate typical soft magnetic materials and particles so small to be identical superparamagnetic nanoparticles. Heating ability of water based colloidal dispersions of samples were studied under magnetic field strength 6.5kA/m and the frequency 190 kHz, and the results showed when increasing Zn2+ to x=0.3 or more the samples not heated up. Depending on the heating curve susceptibility, effective relaxation time and Néel relaxation time , were determined.

Volume 882
Pages 200 - 218
DOI 10.4028/www.scientific.net/KEM.882.200
Language English
Journal Key Engineering Materials

Full Text