Materials Science Forum | 2021

Study of High Temperature Properties of AlSi10Mg Alloy Produced by Laser-Based Powder Bed Fusion

 
 
 
 

Abstract


Additive manufacturing of Al alloys can represent an interesting solution for high-performance components in various industrial fields, as for instance the automotive and aerospace industry. Often, for these applications, the alloys are required to withstand exposure to high temperatures. Therefore, the investigation of the evolution of material properties with increasing temperature is of utmost importance in order to assess their suitability for this kind of applications. In the present study, tensile properties at high temperature were investigated for an AlSi10Mg alloy. Samples were manufactured by laser-based powder bed fusion in horizontal and vertical direction in order to examine the influence of building direction on material behavior. The samples were tested in as-built condition and after exposure to high temperature. Tensile tests were performed up to 150 °C and the effect of holding time at the test temperature was evaluated. Furthermore, the alloy was characterized by mechanical spectroscopy in order to evaluate the behavior of dynamic modulus with temperature and, thus, to provide a comprehensive characterization of the material behavior. It was found that the peculiar microstructure of the alloy produced by additive manufacturing is responsible for good high-temperature strength of the material up to 150 °C. The material also exhibits a good thermal stability even after holding at test temperature for 10 h.

Volume 1016
Pages 1485 - 1491
DOI 10.4028/www.scientific.net/MSF.1016.1485
Language English
Journal Materials Science Forum

Full Text