Materials Science Forum | 2021

Research on Hot Deformation Behaviors of 6061 Al Alloy

 
 
 

Abstract


In this paper, the high temperature flow behaviors of 6061 Al alloy was studied by thermal compression experiments. The effects of temperature, strain rate and strain on the microstructure evolution and flow behavior of the alloy were investigated by experiments. The results show that the flow stress of the alloy increases with the increase of strain rate and it decreases with the increase of deformation temperature. The flow curve reaches the dynamic equilibrium under the interaction of work hardening and dynamic softening mechanism. The uprising deformation temperature promotes thermal excitation dynamic recrystallization of deformed microstructure. With the increase of strain, the microstructure of the alloy is transformed from equiaxed crystal morphology to fibrous structure and strain-induced dynamic recrystallization occurs. As strain rate increases, the action time of dynamic softening mechanism for the studied alloy is reduced, resulting in the fraction of dynamic recrystallized structure is reduced and the flow stress increases.

Volume 1032
Pages 141 - 146
DOI 10.4028/www.scientific.net/MSF.1032.141
Language English
Journal Materials Science Forum

Full Text