Day 4 Thu, August 19, 2021 | 2021

Next Generation High-Definition Geomagnetic Model for Wellbore Positioning, Incorporating New Crustal Magnetic Data

 
 
 
 
 
 
 
 

Abstract


\n Magnetic wellbore positioning depends on an accurate representation of the Earth s magnetic field,where the borehole azimuth is inferred by comparing the magnetic field measured-whiledrilling (MWD) with a geomagnetic reference model. Therefore, model accuracy improvements reduce the position uncertainties. An improved high-resolution model describing the core, crustal and external components of the magnetic field is presented, and it is validated with anindependent set of measurements. Additionally, we benchmark it against other high-resolution geomagnetic models. The crustal part of the improved high-definition model is based on NOAA/NCEI s latest magnetic survey compilation EMAG2v3 which includes over 50 millionnew observations in several parts of the world, including the Gulf of Mexico and Antarctica, and does not rely on any prior information from sea-floor geology, unlike earlier versions. The core field part of the model covers years 1900 through 2020 andis inferred from polar-orbiting satellite data as well as ground magnetic observatory data. The external field part is modelled to degree and order 1 for years 2000 through 2020. The new model has internal coefficients to spherical harmonic degree and order 790, resolving magnetic anomalies to approximately 51 km wavelength at the equator. In order to quantitatively assess its accuracy, the model was compared with independent shipborne, airborne and ground magnetic measurements. We find that the newmodel has comparable or smaller errors than the other models benchmarkedagainst it over the regions of comparisons. Additionally, we compare theimproved model against magnetic datacollected from MWD; the residual error lies well within the accepted industry error model, which may lead tofuture error model improvements.

Volume None
Pages None
DOI 10.4043/31044-ms
Language English
Journal Day 4 Thu, August 19, 2021

Full Text