The Journal of Immunology | 2021

IL-33 Induces Sema4A Expression in Dendritic Cells and Exerts Antitumor Immunity

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Visual Abstract Key Points IL-33 stimulates DCs to express Sema4A and exerts antitumor immunity. Sema4A expression on DCs activates CTLs via Sema4A–Plexin B2 axis. Cancer immunotherapy has shown great promise as a new standard therapeutic strategy against cancer. However, the response rate and survival benefit remain unsatisfactory because most current approaches, such as the use of immune checkpoint inhibitors, depend on spontaneous antitumor immune responses. One possibility for improving the efficacy of immunotherapy is to promote antitumor immunity using adjuvants or specific cytokines actively. IL-33 has been a candidate for such cytokine therapies, but it remains unclear how and in which situations IL-33 exerts antitumor immune effects. In this study, we demonstrate the potent antitumor effects of IL-33 using syngeneic mouse models, which included marked inhibition of tumor growth and upregulation of IFN-γ production by tumor-infiltrating CD8+ T cells. Of note, IL-33 induced dendritic cells to express semaphorin 4A (Sema4A), and the absence of Sema4A abolished the antitumor activity of IL-33, indicating that Sema4A is intrinsically required for the antitumor effects of IL-33 in mice. Collectively, these results not only present IL-33 and Sema4A as potential therapeutic targets but also shed light on the potential use of Sema4A as a biomarker for dendritic cell activation status, which has great value in various fields of cancer research, including vaccine development.

Volume 207
Pages 1456 - 1467
DOI 10.4049/jimmunol.2100076
Language English
Journal The Journal of Immunology

Full Text