Molecular Imaging and Radionuclide Therapy | 2019

Effect of PET Image Reconstruction Techniques on Unexpected Aorta Uptake

 
 
 
 
 
 
 
 

Abstract


Objectives: To determine if unexpected aorta uptake seen in some patients is influenced by popular modern reconstruction algorithms using semi-quantitative and qualitative analysis. Methods: Twenty-five consecutive patients without suspected vascular disease were selected for 18F-FDG positron emission tomography/ computed tomography (PET/CT) scanning and images of the aorta were created using iterative reconstruction (IT), IT + time of flight (TOF), IT + TOF + point spread function correction (referred collectively as UHD) with and without metal artefact reduction (MAR) algorithms. An experienced radiologist created aorta and blood pool (BP) regions of interests then copied these to all reconstructions for accurate positioning before recording target aorta standardized-uptake-values (SUVmax) and background BP SUVmean. Furthermore, target-to-background ratio (TBRmax) was defined by aorta SUVmax-to-BP SUVmean ratio for more analysis. Results: For aorta SUVmax with IT, IT + TOF, UHD, UHD + MAR reconstructions the mean ± standard deviation recorded were 2.15±0.43, 2.25±0.51, 2.25±0.45 and 2.09±0.4, respectively. Values for BP SUVmean were 1.61±0.31, 1.58±0.28, 1.58±0.28 and 1.47±0.25, respectively. Likewise, for TBRmax these were 1.35±0.19, 1.43±0.21, 1.43±0.19, 1.43±0.18, respectively. ANOVA analysis revealed no significant differences for aorta SUVmax (F(0.86) p=0.46), BP SUVmean (F(1.22) p=0.31) or TBRmax (F(0.99) p=0.4). However, the qualitative visual analysis revealed significant differences between IT + TOF with UHD (p=0.02) or UHD + MAR (p=0.02). Conclusion: Reconstruction algorithm effect on aorta SUVmax or BP SUVmean or TBRmax was not statistically significant. However, qualitative visual analysis showed significant differences between IT + TOF as compared with UHD or UHD + MAR reconstructions. Harmonization of techniques with a larger patient cohort is recommended in future clinical trials.

Volume 28
Pages 1 - 7
DOI 10.4274/mirt.galenos.2018.88528
Language English
Journal Molecular Imaging and Radionuclide Therapy

Full Text