Archives of Medical Science | 2021

Molecular cloning, expression, purification and in silico epitope prediction of cobalamin-independent methionine synthase (Mor a 2), as a novel allergen from Morus alba pollen

 

Abstract


Introduction Morus alba (white mulberry) pollen is an aero-allergen source that can trigger allergic diseases. Cobalamin-independent methionine synthase (MetE) in M. alba pollen has been proved to be one of the major allergens for some patients living in Istanbul (Turkey). The aim of the present study was the recombinant production and identification of MetE (Mor a 2), a novel allergen from M. alba pollen. The IgE binding reactivity of rMor a 2 produced for the first time was evaluated and some structural features were investigated by in silico methods to better understand its immunogenicity. Material and methods The gene encoding Mor a 2 was cloned in fission yeast, Schizosaccharomyces pombe ura4-D18hstrain, using pSLF1073 vector. This is the first report of the production of recombinant pollen allergen in S. pombe. After the purification, immunoreactivity of rMor a 2 was confirmed by immunoblotting using sera of patient allergic to M. alba pollen. Besides, B-cell epitopes of rMor a 2 were predicted using various bioinformatic tools, namely Bioinformatics Predicted Antigenic Peptides, BepiPred 2.0 and Immune Epitope Database whereas T-cell epitopes were estimated using NetMHCIIpan-3.2 and NetMHCII 2.3 servers. Results The immunoblotting analysis yielded 11 of 11 positive reactions to rMor a 2. In silico predictions exerted seven B-cell epitopes (22-33, 384-394, 407-423, 547-553, 571-577, 671-678, 736-741) and seven T-cell epitopes (54-62, 161-170, 197-205, 347-358, 622-630, 657-665, 756-764). Conclusions These findings may help the use of rMor a 2 in the diagnosis and treatment of allergic diseases associated with M. alba and/or MetE. Powered by TCPDF (www.tcpdf.org) Pr ep rin t

Volume None
Pages None
DOI 10.5114/AOMS/136322
Language English
Journal Archives of Medical Science

Full Text