Atmospheric Chemistry and Physics | 2021

Aircraft measurements of aerosol and trace gas chemistry in the eastern North Atlantic

 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Abstract. The Aerosol and Cloud Experiment in the Eastern North Atlantic\xa0(ACE-ENA) investigated properties of aerosols and subtropical marine boundary layer\xa0(MBL) clouds. Low subtropical marine clouds can have a large effect on Earth s radiative budget, but they are poorly represented in global climate models. In order to understand their radiative effects, it is imperative to understand the composition and sources of the MBL cloud condensation nuclei\xa0(CCN). The campaign consisted of two intensive operation periods\xa0(IOPs) (June–July\xa02017 and January–February\xa02018) during which an instrumented G-1\xa0aircraft was deployed from Lajes Field on Terceira Island in the Azores, Portugal. The G-1\xa0conducted research flights in the vicinity of the Atmospheric Radiation Measurement\xa0(ARM) Eastern North Atlantic\xa0(ENA) atmospheric observatory on Graciosa Island. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer\xa0(HR-ToF-AMS) and Ionicon proton-transfer-reaction mass spectrometer\xa0(PTR-MS) were deployed aboard the aircraft, characterizing chemistry of non-refractory aerosol and trace gases, respectively. The eastern North Atlantic region was found to be very clean, with an average non-refractory submicrometer aerosol mass loading of 0.6\u2009 µ g\u2009m −3 in the summer and 0.1\u2009 µ g\u2009m −3 in the winter, measured by the AMS. Average concentrations of the trace reactive gases methanol and acetone were 1–2\u2009ppb; benzene, toluene and isoprene were even lower, \u2009ppb. Mass fractions of sulfate, organics, ammonium and nitrate in the boundary layer were 69\u2009%, 23\u2009%, 7\u2009% and 1\u2009% and remained largely similar between seasons. The aerosol chemical composition was dominated by sulfate and highly processed organics. Particulate methanesulfonic acid\xa0(MSA), a well-known secondary biogenic marine species, was detected, with an average boundary layer concentration of 0.021\u2009 µ g\u2009m −3 , along with its gas-phase precursor, dimethyl sulfide\xa0(DMS). MSA accounted for no more than 3\u2009% of the submicron, non-refractory aerosol in the boundary layer. Examination of vertical profiles of aerosol and gas chemistry during ACE-ENA reveals an interplay of local marine emissions and long-range-transported aged aerosol. A case of transport of biomass burning emissions from North American fires has been identified using back-trajectory analysis. In the summer, the non-refractory portion of the background CCN budget was heavily influenced by aerosol associated with ocean productivity, in particular sulfate formed from DMS oxidation. Episodic transport from the continents, particularly of biomass burning aerosol, periodically increased CCN concentrations in the free troposphere. In the winter, with ocean productivity lower, CCN concentrations were overall much lower and dominated by remote transport. These results show that anthropogenic emissions perturb CCN concentrations in remote regions that are sensitive to changes in CCN number and illustrate that accurate predictions of both transport and regional aerosol formation from the oceans are critical to accurately modeling clouds in these regions.

Volume 21
Pages 7983-8002
DOI 10.5194/ACP-21-7983-2021
Language English
Journal Atmospheric Chemistry and Physics

Full Text