Atmospheric Chemistry and Physics | 2021

Technical note: Sea salt interference with black carbon quantification in snow samples using the single particle soot photometer

 
 
 
 
 
 

Abstract


Abstract. After aerosol deposition from the atmosphere, black carbon (BC) takes part\nin the snow albedo feedback contributing to the modification of the Arctic\nradiative budget. With the initial goal of quantifying the concentration of\nBC in the Arctic snow and subsequent climatic impacts, snow samples were\ncollected during the research vessel (R/V) Polarstern expedition of PASCAL (Physical Feedbacks of Arctic Boundary Layer, Sea Ice,\nCloud and Aerosol; Polarstern cruise 106) in the sea-ice-covered Fram Strait in early summer 2017. The refractory BC (rBC) content was then measured in the laboratory of the Alfred Wegener Institute with the single particle soot photometer (SP2). Based on the strong observational correlations between both rBC concentration and rBC diameter with snow salinity, we hypothesize\na salt-induced matrix effect interfering with the SP2 analysis. This paper\nevaluates the impact of sea salt, based on the measurement of electrical\nconductivity ( κ ) in water samples, on rBC measurements made with a\nSP2 nebulizer technique. Under realistic salinity conditions, laboratory\nexperiments indicated a dramatic six-fold reduction in observed rBC\nconcentration with increasing salinity. In the salinity conditions tested in the present work (salt concentration below 0.4\u2009g\u2009L −1 ) the impact of salt on the nebulization of water droplets might be negligible. However, the SP2 mass detection efficiency systematically decreased with increasing\nsalinity, with the smaller rBC particles being preferentially undetected.\nThe high concentration of suspended salt particles and the formation of\nthick salt coatings on rBC cores caused problems in the SP2 analog-to-digital conversion of the signal and incandescence quenching,\nrespectively. Changes to the signal acquisition parameters and the laser power of the SP2 improved the mass detection efficiency, which, nonetheless, stayed below unity. The present work provides evidence that a high concentration of sea salt undermines the quantification of rBC in snow performed with the SP2 nebulizer system described here. This interference has not been previously reported and might affect the future such analysis of rBC particles in snow collected, especially over sea ice or coastal regions strongly affected by sea salt deposition.

Volume 21
Pages 9329-9342
DOI 10.5194/ACP-21-9329-2021
Language English
Journal Atmospheric Chemistry and Physics

Full Text