Atmospheric Measurement Techniques Discussions | 2021

Real-time UV-Index retrieval in Europe using Earth Observation \nbased techniques and validation against ground-based measurements

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Abstract. This study introduces an Earth observation (EO)-based system which is capable of operationally estimating and continuously monitoring the ultraviolet index (UVI) in Europe. The UVIOS (i.e. UV-Index Operating System) exploits a synergy of radiative transfer models with high performance computing and EO data from satellites (Meteosat Second Generation and Meteorological Operational Satellite-B), and retrieval processes (Tropospheric Emission Monitoring Internet Service, Copernicus Atmosphere Monitoring Service and the Global Land Service). It provides a near-real-time now-casting and short-term forecasting service for UV radiation over Europe. The main atmospheric inputs for the UVI simulations include ozone, clouds and aerosols while the impacts of ground elevation and surface albedo are also taken into account. The UVIOS output is the UVI at high spatial and temporal resolution (5\u2009km and 15 minutes, respectively) for Europe (i.e. 1.5 million pixels) in real-time. The UVI is empirically related to biologically important UV dose rates and the reliability of this EO-based solution was verified against ground-based measurements from 17 stations across Europe. Stations are equipped with spectral, broadband or multi-filter instruments and cover a range of topographic and atmospheric conditions. A period of over one year of forecasted 15-min retrievals under all sky conditions were compared with the ground–based measurements. UVIOS forecasts were within ±0.5 of measured UVI for at least 70\u2009% of the data compared at all stations. For clear sky conditions the agreement was better than 0.5 UVI for 80\u2009% of the data. A sensitivity analysis of EO inputs and UVIOS outputs was performed in order to quantify the level of uncertainty in the derived products, and to identify the covariance between the accuracy of the output and the spatial and temporal resolution, and the quality of the inputs. Overall, UVIOS slightly overestimated UVI due to observational uncertainties in inputs of cloud and aerosol. This service will hopefully contribute to EO capabilities and will assist the provision of operational early warning systems that will help raise awareness among European Union citizens of the health implications of high UVI doses.

Volume None
Pages 1-65
DOI 10.5194/AMT-2020-506
Language English
Journal Atmospheric Measurement Techniques Discussions

Full Text