Archive | 2021

Power-law thermal stratification in lake Geneva and its seasonal evolution

 
 
 
 
 
 

Abstract


<p>Lake Geneva is one of the largest bodies of water in western Europe and the largest one in the Alps region. Besides its obvious touristic importance it supplies drinking water for a large portion of Switzerland and work for hundreds of commercial fishermen. It has been under constant monitoring since the 1970 s, for the impact of human activities on its water quality and biodiversity. The lake is known to be a warm monomictic lake, thermally stratified through most of the year with the exception of winter, when small thermal vertical gradients permit mixing from top to bottom. In lake Geneva, thermal stratification is one of the main environmental drivers of phytoplankton communities which are widely used as bioindicators for freshwater ecosystems. Studies on thermal stratification are thus essential to better predict phytoplankton seasonality and the development of harmful species blooms. In this work we examine more than 20 years of surveillance data from the INRAE (National Research Institute for Agriculture, Food and Environment) regarding temperature vertical profiles and meteorological data. We review both the climatology and the temperature stratification history of the lake and refine the temperature depth profiles obtaining the yearly progressions of the mixed layer depths. We then discuss the fitting of the depth profiles through the use of power-law and exponential functions, finding that in 66% of the cases the power-law better describes the experimental data, and we report the probability density function of the related statistics throughout the seasons. &#160;Finally, we discuss the implications of our results for the modelling of the lake turbulent regime and phytoplankton seasonality.</p>

Volume None
Pages None
DOI 10.5194/EGUSPHERE-EGU21-8821
Language English
Journal None

Full Text