Earth System Dynamics Discussions | 2019

Biogeophysical impacts of forestation in Europe: First results from the LUCAS Regional Climate Model intercomparison

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Abstract. The Land Use and Climate Across Scales Flagship Pilot Study (LUCAS FPS) is a coordinated community effort to improve the integration of Land Use Change (LUC) in Regional Climate Models (RCMs) and to quantify the biogeophysical effects of LUC on local to regional climate in Europe. In the first phase of LUCAS, nine RCMs are used to explore the biogeophysical impacts of re-/afforestation over Europe. Namely, two idealized experiments representing respectively a non-forested and a maximally forested Europe are compared in order to quantify spatial and temporal variations in the regional climate sensitivity to forestation. We find some robust features in the simulated response to forestation. In particular, all models indicate a year-round decrease in surface albedo, which is most pronounced in winter and spring at high latitudes. This results in a winter warming effect, which is relatively robust across models. However, there are also a number of strongly diverging responses. For instance, there is no agreement on the sign of temperature changes in summer with some RCMs predicting a widespread cooling from forestation, a widespread warming, or a mixed response. A large part of the inter-model spread is attributed to the representation of land processes. In particular, differences in the partitioning of sensible and latent heat are identified as a key source of uncertainty. In contrast, for precipitation, the representation of atmospheric processes dictates more directly the simulated response. In conclusion, the multi-model approach we use here has the potential to deliver more robust and reliable information to stakeholders involved in land use planning, as compared to results based on single models. However, given the contradictory responses identified, our results also show that there are still fundamental uncertainties that need to be tackled to better anticipate the possible intended or unintended consequences of LUC on regional climates.

Volume None
Pages 1-31
DOI 10.5194/ESD-2019-4
Language English
Journal Earth System Dynamics Discussions

Full Text