Earth System Science Data | 2021

A global viral oceanography database (gVOD)

 
 
 
 
 
 
 
 

Abstract


Abstract. Virioplankton are a key component of the marine biosphere in maintaining diversity of microorganisms and stabilizing ecosystems. They also contribute greatly to nutrient cycles/cycling by releasing organic matter after lysis of hosts. In this study, we constructed the first global viral oceanography database (gVOD) by collecting 10\u2009931 viral abundance (VA) data and 727 viral production (VP) data, along with host and relevant oceanographic parameters when available. Most VA data were obtained in the North Atlantic (32\u2009%) and North Pacific (29\u2009%) oceans, while the southeast Pacific and Indian oceans were quite undersampled. The VA in the global ocean was 1.17 ( ± 3.31 ) × 10 7 particles\u2009mL−1 . The lytic and lysogenic VP in the global ocean was 9.87 ( ± 24.16 ) × 10 5 and 2.53 ( ± 8.64 ) × 10 5 particles mL - 1 h - 1 , respectively. Average VA in coastal oceans was higher than that in surface open oceans ( 3.61 ( ± 6.30 ) × 10 7 versus 0.73 ( ± 1.24 ) × 10 7 particles\u2009mL−1 ), while average VP in coastal and surface open oceans was close. Vertically, VA, lytic VP and lysogenic VP deceased from surface to deep oceans by about 1\xa0order of magnitude. The total number of viruses in the global ocean estimated by bin-averaging and the random forest method was 1.56×1030 and 1.49×1030 \xa0particles, leading to an estimate of global ocean viral biomass at 35.9 and 34.4\u2009 Tg\u2009C , respectively. We expect that the gVOD will be a fundamental and very useful database for laboratory, field and modeling studies in marine ecology and biogeochemistry. The full gVOD database (Xie et al., 2020) is stored in PANGAEA ( https://doi.org/10.1594/PANGAEA.915758 ).

Volume 13
Pages 1251-1271
DOI 10.5194/ESSD-13-1251-2021
Language English
Journal Earth System Science Data

Full Text