Geoscientific Model Development Discussions | 2021

Synergy between satellite observations of soil moisture and water storage anomalies for global runoff estimation

 
 
 
 
 
 
 
 
 

Abstract


Abstract. This paper presents an innovative approach, STREAM – SaTellite based Runoff Evaluation And Mapping – to derive daily river discharge and runoff estimates from satellite soil moisture, precipitation and terrestrial water storage anomalies observations. Within a very simple model structure, the first two variables (precipitation and soil moisture) are used to estimate the quick-flow river discharge component while the terrestrial water storage anomalies are used for obtaining its complementary part, i.e., the slow-flow river discharge component. The two are then summed up to obtain river discharge and runoff estimates. The method is tested over the Mississippi river basin for the period 2003–2016 by using Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) rainfall data, European Space Agency Climate Change Initiative (ESA CCI) soil moisture data and Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage data. Despite the model simplicity, relatively high-performance scores are obtained in river discharge simulations, with a Kling-Gupta efficiency index greater than 0.65 both at the outlet and over several inner stations used for model calibration highlighting the high information content of satellite observations on surface processes. Potentially useful for multiple operational and scientific applications (from flood warning systems to the understanding of water cycle), the added-value of the STREAM approach is twofold: 1) a simple modelling framework, potentially suitable for global runoff monitoring, at daily time scale when forced with satellite observations only, 2) increased knowledge on the natural processes, human activities and on their interactions on the land.

Volume None
Pages 1-38
DOI 10.5194/GMD-2020-399
Language English
Journal Geoscientific Model Development Discussions

Full Text