Solid Earth Discussions | 2021

A new finite element approach to model microscale strain localization within olivine aggregates

 
 
 
 
 

Abstract


Abstract. This paper presents a new mesoscopic full field approach for the modelling of microstructural evolutions and mechanical behavior of olivine aggregates. The mechanical framework is based on a reduced crystal plasticity (CP) formulation which is adapted to account for non-dislocation glide strain-accommodating mechanisms in olivine polycrystals. This mechanical description is coupled with a mixed velocity/pressure finite element (FE) formulation through a classical crystal plasticity finite element method (CPFEM) approach. The microstrutural evolutions, such as grain boundary migration and dynamic recrystallization, are also computed within a FE framework using an implicit description of the polycrystal through the level-set approach. This numerical framework is used to study the strain localization, at the polycrystal scale, on different types of pre-existing shear zones for thermomechanical conditions relevant to laboratory experiments. We show that both fine-grained and crystallographic textured pre-existing bands favor strain localization at the sample scale. The combination of both processes has a large effect on strain localization, which emphasizes the importance of these two microstructural characteristics (texture and grain size) on the mechanical behavior of the aggregate.\n

Volume None
Pages 1-29
DOI 10.5194/SE-2021-30
Language English
Journal Solid Earth Discussions

Full Text