The Cryosphere Discussions | 2021

Large-scale sea ice motion from Sentinel-1 and the RADARSAT Constellation Mission

 
 
 

Abstract


Abstract. As Arctic sea ice extent continues to decline, remote sensing observations are becoming even more vital for the monitoring and understanding of sea ice. Recently, the sea ice community has entered a new era of synthetic aperture radar (SAR) satellites operating at C-band with the launch of Sentinel-1A in 2014, Sentinel-1B in 2016 and the RADARSAT Constellation Mission (RCM) in 2019. These missions represent 5 spaceborne SAR sensors, that together routinely cover the pan-Arctic sea ice domain. Here, we utilized over 60,000 SAR images from Sentinel-1AB (S1) and RCM to generate large-scale sea ice motion (SIM) estimates over the pan-Arctic domain from March to December, 2020. On average, 4.5 million SIM vectors from S1 and RCM were automatically detected per week for 2020 and when combined (S1+RCM) they facilitated the generation of 7-day, 25\u2009km SIM products across the pan-Arctic domain. S1+RCM SIM provided more coverage in Hudson Bay, Davis Strait, Beaufort Sea, Bering Sea, and over the North Pole compared to SIM from S1 alone. S1+RCM SIM was able to be resolved within the narrow channels and inlets across the pan-Arctic alleviating the main limitation of coarser resolution sensors. S1+RCM SIM provided larger ice speeds with a mean difference (MD) of 1.3\u2009km/day compared to the National Snow and Ice Data Center (NSIDC) SIM product and a MD of 0.76\u2009km/day compared to Ocean and Sea Ice-Satellite Application Facility (OSI-SAF) SIM product. S1+RCM was also able to better resolve SIM in the marginal ice zone compared to the NSIDC and OSA-SAF SIM products. Overall, our results demonstrate that combining SIM from multiple spaceborne SAR satellites allows for large-scale SIM to be routinely generated across the pan-Arctic domain.\n

Volume None
Pages 1-20
DOI 10.5194/TC-2021-223
Language English
Journal The Cryosphere Discussions

Full Text