Archive | 2021

Crustal architecture of Amsterdam-St. Paul Island from an integrated geophysical approach

 
 
 
 

Abstract


<p>The Amsterdam-St. Paul (ASP) island complex is a manifestation of interaction between the South-East Indian Ridge (SEIR) and the ASP mantle plume, which was formed ~10 Ma. Very few geophysical studies have been conducted over the ASP island complex and therefore we have limited information about the island so far. We performed an integrated geophysical approach using gravity, magnetic study along with the joint inversion of Ps receiver function and Rayleigh wave group velocity dispersion curve to determine the crustal architecture and Moho variation in the region. The result of integrated gravity-magnetic modeling revealed that the island complex is associated with three crustal layers beneath the sedimentary strata. Inversion of Rayleigh wave group velocity dispersion curve accounts for vertical shear wave velocity average which supported the layered velocity profile. The results revealed that magnetic material (Mid oceanic ridge basalt/Flood basalt) has carpeted the entire island causing high magnetic anomaly of -1000 to 1500 nT, which is generated by gradual accumulation of a thick pile of magnetic material of normal as well as reverse polarity. The results by integrated Gravity-magnetic model suggest that crust beneath the island is suggested to be highly affected by volcanic activity (Mantle Plume/Ridge) and is underlain by high-density underplated material. The results further suggest that SEIR has less role for the outpoured magmatic activity. Integrated Gravity-magnetic model show that Moho is variable beneath the island complex and lies in the range of ~12-17 km. Further results by joint inversion of Ps receiver function and Rayleigh wave group velocity dispersion curve for the station (AIS : Nouvelle Amsterdam - TAAF, France) suggest Moho depth of ~14 km beneath the Amsterdam island and is well in agreement with the gravity-magnetic studies. The result clearly indicates that ASP island complex is highly affected by the ASP plume activity and was evolved during the ridge-plume interaction.</p>

Volume None
Pages None
DOI 10.5194/egusphere-egu21-11155
Language English
Journal None

Full Text