Archive | 2021

Calibration and Validation of Infrared Sounders with Moon and Mercury

 
 
 
 
 

Abstract


<p>Serendipitous observations of airless bodies of the inner solar system provide a unique means to the calibration of instruments on meteorological research satellites, because the physical properties of their surfaces change very little, even on large time scales. We investigated how certain instrumental effects can be characterised with observations of the Moon and Mercury. For this we identified and analysed intrusions of the Moon in the deep space views of HIRS/2, /3, and /4 (High-resolution Infrared Sounder) on various satellites in polar orbits and as well some images obtained with SEVIRI (Spinning Enhanced Visible Infra-Red Imager) on MSG-3 and -4 (Meteosat Second Generation), which had Mercury standing close to the Earth in the rectangular field of view.</p><p>A full-disk, infrared Moon model was developed that describes how the lunar flux density depends on phase angle and wavelength. It is particularly helpful for inter-calibration, checks of the photometric consistency of the sounding channels, and the calculation of an upper limit on the non-linearity of the shortwave channels of HIRS. In addition, we used the Moon to determine the co-registration of the different spectral channels.</p><p>Studies of the channel alignment are also presented for SEVIRI, an infrared sounder with an angular resolution about a hundred times better than HIRS. As we wanted to check the image quality of this instrument with a quasi-point source as well, we replaced here the Moon with Mercury. We found the typical smearing of the point spread function in the scan direction and occasionally a nearby ghost image, which is three to four times fainter than the main image of the planet. Both effects cause additional uncertainties of the photometric calibration. &#160;</p>

Volume None
Pages None
DOI 10.5194/egusphere-egu21-7919
Language English
Journal None

Full Text