Archive | 2021

C-band radar data and in situ measurements for the monitoring of \nwheat crops in a semi-arid area (center of Morocco)

 
 
 
 
 
 
 
 
 
 
 

Abstract


Abstract. A better understanding of the hydrological functioning of irrigated crops using remote sensing observations is of prime importance in the semi-arid areas where the water resources are limited. Radar observations, available at high resolution and revisit time since the launch of Sentinel-1 in 2014, have shown great potential for the monitoring of the water content of the upper soil and of the canopy. In this paper, a complete set of data for radar signal analysis is shared to the scientific community for the first time to our knowledge. The data set is composed of Sentinel-1 products and in situ measurements of soil and vegetation variables collected during three agricultural seasons over drip-irrigated winter wheat in the Haouz plain in Morocco. The in situ data gathers soil measurements (time series of half-hourly surface soil moisture, surface roughness and agricultural practices) and vegetation measurements collected every week/two weeks including above-ground fresh and dry biomasses, vegetation water content based on destructive measurements, cover fraction, leaf area index and plant height. Radar data are the backscattering coefficient and the interferometric coherence derived from Sentinel-1 GRDH (Ground Range Detected High resolution) and SLC (Single Look Complex) products, respectively. The normalized difference vegetation index derived from Sentinel-2 data based on Level-2A (surface reflectance and cloud mask) atmospheric effects-corrected products is also provided. This database, which is the first of its kind made available in open access, is described here comprehensively in order to help the scientific community to evaluate and to develop new or existing remote sensing algorithms for monitoring wheat canopy under semi-arid conditions. The data set is particularly relevant for the development of radar applications including surface soil moisture and vegetation parameters retrieval using either physically based or empirical approaches such as machine and deep learning algorithms. The database is archived in the DataSuds repository and is freely-accessible via the DOI: https://doi.org/10.23708/8D6WQC (Ouaadi et al., 2020a).\n

Volume None
Pages None
DOI 10.5194/essd-2020-338
Language English
Journal None

Full Text