Archive | 2021

Performance of the Adriatic Sea and Coast (AdriSC) climate component – a COAWST V3.3-based coupled atmosphere-ocean modelling suite: ocean part

 
 
 

Abstract


Abstract. In this study, the Adriatic Sea and Coast (AdriSC) kilometre-scale atmosphere-ocean climate model covering the Adriatic and northern Ionian Seas is presented. The AdriSC ocean results of a 31-year long (i.e. 1987–2017) climate simulation, derived with the Regional Ocean Modeling System (ROMS) 3-km and 1-km models, are evaluated with respect to a comprehensive collection of remote-sensing and in situ observational data. In general, it is found that the AdriSC model is capable to reproduce the observed sea-surface properties, daily temperatures and salinities and the hourly ocean currents with good accuracy. In particular, the AdriSC ROMS 3-km model demonstrates skill in reproducing the main variabilities of the sea-surface height as well as the sea-surface temperature, despite a persistent negative bias within the Adriatic Sea. Furthermore, the AdriSC ROMS 1-km model is found to be more capable to reproduce the observed thermohaline and dynamical properties than the AdriSC ROMS 3-km model. For the temperature and salinity, better results are obtained in the deeper parts than in the shallow shelf and coastal parts, particularly for the surface layer of the Adriatic Sea. The AdriSC ROMS 1-km model is also found to perform well in reproducing the seasonal thermohaline properties of the water masses over the entire Adriatic-Ionian domain. The evaluation of the modelled ocean currents revealed better results at locations along the eastern coast and especially the north-eastern shelf than in the middle-eastern coastal area and the deepest part of the Adriatic Sea. Finally, the AdriSC climate component is found to be a more suitable modelling framework to study the dense water formation and long-term thermohaline circulation of the Adriatic-Ionian basin than the available Mediterranean regional climate models.\n

Volume None
Pages None
DOI 10.5194/gmd-2021-155
Language English
Journal None

Full Text