Archive | 2021

SciKit-GStat 1.0: A SciPy flavoured geostatistical variogram estimation toolbox written in Python

 

Abstract


Geostatistical methods are widely used in almost all geoscientific disciplines, i.e. for interpolation, re-scaling, data assimilation or modelling. At its core geostatistics aims to detect, quantify, describe, analyze and model spatial covariance of observations. The variogram, a tool to describe this spatial covariance in a formalized way, is at the heart of every such method. Unfortunately, many applications of geostatistics rather focus on the interpolation method or the result, than the quality of the estimated variogram. Not least because estimating a variogram is commonly left as a task for computers and 5 some software implementations do not even show a variogram to the user. This is a miss, because the quality of the variogram largely determines, whether the application of geostatistics makes sense at all. Furthermore, the Python programming language was missing a mature, well-established and tested package for variogram estimation a couple of years ago. Here I present SciKit-GStat, an open source Python package for variogram estimation, that fits well into established frameworks for scientific computing and puts the focus on the variogram before more sophisticated methods are about to be applied. 10 SciKit-GStat is written in a mutable, object-oriented way that mimics the typical geostatistical analysis workflow. Its main strength is the ease of usage and interactivity and it is therefore usable with only a little or even no knowledge in Python. During the last few years, other libraries covering geostatistics for Python developed along with SciKit-GStat. Today, the most important ones can be interfaced by SciKit-GStat. Additionally, established data structures for scientific computing are reused internally, to keep the user from learning complex data models, just for using SciKit-GStat. Common data structures along 15 with powerful interfaces enable the user to use SciKit-GStat along with other packages in established workflows, rather than forcing the user to stick to the authors programming paradigms. SciKit-GStat ships with a large number of predefined procedures, algorithms and models, such as variogram estimators, theoretical spatial models or binning algorithms. Common approaches to estimate variograms are covered and can be used out of the box. At the same time, the base class is very flexible and can be adjusted to less common problems, as well. Last but not 20 least, it was made sure, that a user is aided at implementing new procedures, or even extending the core functionality as much as possible, to extend SciKit-GStat to uncovered use-cases. With broad documentation, user guide, tutorials and good unit-test coverage, SciKit-GStat enables the user to focus on variogram estimation, rather than implementation details. 1 https://doi.org/10.5194/gmd-2021-174 Preprint. Discussion started: 27 July 2021 c © Author(s) 2021. CC BY 4.0 License.

Volume None
Pages None
DOI 10.5194/gmd-2021-174
Language English
Journal None

Full Text