The Cryosphere Discussions | 2019

Seasonal and Diurnal Dynamics of Subglacial Channels: Observations Beneath an Alpine Glacier

 
 
 
 
 
 
 

Abstract


Abstract. Water flowing below glaciers exerts a major control on glacier basal sliding speeds. However, our knowledge on the physics of subglacial hydrology and its link with sliding is limited by lacking observations. Here we use a two-year long dataset made of on-ice measured seismic and in-situ measured glacier basal sliding speed records on the Glacier d’Argentiere (French Alps) to investigate the physics of subglacial channels and its potential link with glacier basal sliding. Using dedicated theory and concomitant measurements of water discharge, we quantify temporal changes in channels hydraulic radius and hydraulic pressure gradient. At seasonal timescales we observe, for the first time, that hydraulic radius and hydraulic pressure gradient present a four-fold increase from spring to summer, followed by a comparable decrease towards autumn. At low discharge during the early and late melt season channels respond to changes in discharge mainly through changes in hydraulic radius, a regime that is consistent with predictions of channels behaving at equilibrium. In contrast, at high discharge and high short-term water-supply variability (summertime), channels undergo strong changes in hydraulic pressure gradient, a behavior that is consistent with channels being out-of-equilibrium. This out-of-equilibrium regime is further supported by observations at the diurnal scale, which demonstrate that channels pressurize in the morning and depressurize in the afternoon. During summer we also observe high and sustained basal sliding speeds, supporting that the widespread inefficient drainage system (cavities) is likely pressurized concomitantly with the channel-system. We propose that pressurized channels help sustain high pressure in cavities (and therefore high glacier sliding speeds) through an efficient hydraulic connection between the two systems. Using the two regimes herein observed in channels seasonal-dynamics as constraints for subglacial hydrology/ice dynamics models may allow to strengthen our knowledge on the physics of subglacial processes.

Volume None
Pages 1-31
DOI 10.5194/tc-2019-243
Language English
Journal The Cryosphere Discussions

Full Text