Materials Science | 2021

The Effect of Laser Scanning Speed on Microstructure and Performance of Cr3C2-NiCr Cermet Fabricated by in-situ Laser Cladding

 
 
 
 
 
 
 
 

Abstract


To explore the effect of laser scanning speed on the microstructure and performance of Cr3C2-NiCr cermet layers fabricated by in-situ laser cladding, Cr3C2-NiCr cermet layers were laser cladded from Ni/Cr/Graphite (25:65:10 wt.%) elemental powder mixtures. The microstructures of the laser cladded cermet layers and the formation mechanism were investigated. In addition, the effect of laser scanning speed on the microstructure, friction and corrosion performance of the Cr3C2-NiCr cermet layers was studied. The results indicated that the in-situ laser cladded Cr3C2-NiCr cermet layers were composed of NiCr binder and Cr3C2. The laser scanning speed had a significant influence on the carbide content, composition and size. Furthermore, it affected the in-situ laser cladded cermet layer’s hardness and wear resistance. The corrosion resistance of the in-situ laser cladded cermet layer was superior to that of laser cladded nickel-based alloy and was improved with decreasing laser scanning speed.

Volume None
Pages None
DOI 10.5755/J02.MS.23557
Language English
Journal Materials Science

Full Text