Jundishapur Journal of Microbiology | 2021

Characteristics of Quinolone Resistance in Multidrug-Resistant Acinetobacter baumannii Strains Isolated from General Hospitals

 
 
 

Abstract


Background: Acinetobacter baumannii is the causative agent in various types of hospital-acquired infections, including respiratory, urinary tract, and wound infections. Objectives: This study investigated the primary mechanisms underlying quinolone resistance in A. baumannii strains, isolated from samples collected from general hospitals. Methods: Ninety-eight strains of A. baumannii were isolated from clinical specimens from general hospitals from 2017 – 2019. Antimicrobial susceptibility, efflux pump inhibition tests, multilocus sequence typing (MLST), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analyses were conducted on 64 strains, and the blaoxa-51-like gene sequence was detected. Results: In the antimicrobial susceptibility test, 78.1% (n = 50) of the strains exhibited resistance to ciprofloxacin, a quinolone antibiotic, and 57.8% (n = 37) strains were multidrug resistant (MDR). For 18 strains, the minimum inhibitory concentration of ciprofloxacin reduced in presence of an efflux pump inhibitor. Sequence analysis revealed that in 50 strains of A. baumannii, the codon for serine (TCA) in gyrA was replaced by that for leucine (TTA), whereas in 43 strains, the codon for serine (TCG) in parC was replaced by that for leucine (TTG). Multilocus sequence typing analysis confirmed 18 sequence types, and allelic number analysis showed the presence of nine gyrB alleles, with gyrB3 showing the highest frequency (62.5%). Conclusions: The findings of this study will be useful in improving treatment efficiency and preventing the spread of A. baumannii (both MDR and non-MDR strains).

Volume 14
Pages None
DOI 10.5812/JJM.115128
Language English
Journal Jundishapur Journal of Microbiology

Full Text