Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery | 2019

[A green route for the fabrication of thermo-sensitive chitosan nerve conduits and their property evaluation].

 
 
 

Abstract


Objective\nTo explore a green route for the fabrication of thermo-sensitive chitosan nerve conduits, improve the mechanical properties and decrease the degradation rate of the chitosan nerve conduits.\n\n\nMethods\nTaking advantage of the ionic specific effect of the thermo-sensitive chitosan, the strengthened chitosan nerve conduits were obtained by immersing the gel-casted conduits in salt solution for ion-induced phase transition, and rinsing, lyophilization, and 60Co sterilization afterwards. The nerve conduits after immersing in NaCl solutions for 0, 4, 12, 24, 36, 48, and 72 hours were obtained and characterized the general observation, diameters and mechanical properties. According to the above results, the optimal sample was chosen and characterized the microstructure, degradation properties, and cytocompatibility. The left sciatic nerve defect 15 mm in length was made in 20 male Sprague Dawley rats. The autologous nerves (control group, n=10) and the nerve conduits (experimental group, n=10) were used to repair the defects. At 8 weeks after operation, the compound muscle action potential (CMAP) was measured. The regenerated nerves were investigated by gross observation and toluidine blue staining. The gastrocnemius muscle was observed by HE staining.\n\n\nResults\nWith the increased ionic phase transition time, the color of the conduit was gradually deepened and the diameter was gradually decreased, which showed no difference during 12 hours. The tensile strength of the nerve conduit was increased gradually. The ultimate tensile strength showed significant difference between the 48 hours and 12, 24, and 36 hours groups ( P<0.05), and no significant difference between the 48 hours and 72 hours groups ( P>0.05). As a result, the nerve conduit after ion-induced phase transition for 48 hours was chosen for further study. The scanning electron microscope (SEM) images showed that the nerve conduit had a uniform porous structure. The degradation rate of the the nerve conduit after ion-induced phase transition for 48 hours was significantly decreased as compared with that of the conduit without ion-induced phase transition. The nerve conduit could support the attachment and proliferation of rat Schwann cells on the inner surface. The animal experiments showed that at 8 weeks after operation, the CMAPs of the experimental and control groups were (3.5±0.9) and (4.3±1.1) m/V, respectively, which showed no significant difference between the two groups ( P<0.05), and were significantly lower than that of the contralateral site [(45.6±5.6 m/V), P>0.05]. The nerve conduit of the experimental group could repair the nerve defect. There was no significant difference between the experimental and control groups in terms of the histomorphology of the regenerated nerve fibers and the gastrocnemius muscle.\n\n\nConclusion\nThe green route for the fabrication of thermo-sensitive chitosan nerve conduits is free of any toxic reagents, and has simple steps, which is beneficial to the industrial transformation of the chitosan nerve conduit products. The prepared chitosan nerve conduit can be applied to rat peripheral nerve defect repair and nerve tissue engineering.

Volume 33 11
Pages \n 1439-1445\n
DOI 10.7507/1002-1892.201904009
Language English
Journal Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery

Full Text