Archive | 2019

A Comparative study of Time Series, Empirical Orthogonal Transformation and Descriptive Statistical Analysis on Meteorological Parameters over Ogoja and Maiduguri

 
 
 

Abstract


In this study, time series statistical analysis was carried out on the monthly average daily meteorological parameters of global solar radiation, sunshine hours, wind speed, mean temperature, rainfall, cloud cover and relative humidity during the period of thirty one years (1980 – 2010) using IBM SPSS Statistics version 20 with expert modeler to determine the level, trend and seasonal variations for Ogoja and Maiduguri. Seasonal Auto Regressive Integrated Moving Average models were determined for the two locations along with their respective statistical indicators of coefficient of determination, Root Mean Square Error, Mean Absolute Percentage Error and Mean Absolute Error and are found suitable for one step ahead forecast for the studied area. The factor analysis (empirical orthogonal transformation) and descriptive statistical analysis Original Research Article Akpootu et al.; JENRR, 3(1): 1-14, 2019; Article no.JENRR.49141 2 was also carried out for the study areas under investigation. The results indicated that the model type for all the meteorological parameters for Ogoja is simple seasonal while that for Maiduguri is simple seasonal except for rainfall and cloud cover with winter’s additive and ARIMA models respectively. The correlation matrix obtained from the factor analysis for the studied area indicated that the global solar radiation and wind speed are more correlated with the mean temperature. The sunshine hours and mean temperature are more correlated with the global solar radiation. The rainfall is more correlated with the relative humidity; similarly, the relative humidity is more correlated with the rainfall. However, the cloud cover is more correlated to the rainfall for Ogoja while for Maiduguri the cloud cover is more correlated to the relative humidity. The component matrix analysis revealed that two seasons are identified for Ogoja; the rainy and dry seasons while for Maiduguri three seasons are identified; the rainy, cool dry (harmattan) and hot dry seasons. The skewness and kurtosis test for Ogoja indicated that the global solar radiation, sunshine hours, cloud cover and relative humidity are negatively skewed and the wind speed, mean temperature and rainfall are positively skewed while the global solar radiation, sunshine hours, wind speed, cloud cover and relative humidity indicates possibility of a leptokurtic distribution and the mean temperature and rainfall indicates possibility of a platykurtic distribution. The skewness and kurtosis for Maiduguri indicated that the solar radiation, rainfall and relative humidity are positively skewed and the sunshine hours, wind speed, mean temperature and cloud cover are negatively skewed while the global solar radiation, rainfall and cloud cover indicates possibility of a leptokurtic distribution and the sunshine hours, wind speed, mean temperature and relative humidity indicates possibility of a platykurtic distribution.

Volume None
Pages 1-14
DOI 10.9734/JENRR/2019/V3I130088
Language English
Journal None

Full Text