Andreas Hiergeist
University of Regensburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andreas Hiergeist.
Blood | 2015
Daniela Weber; Peter J. Oefner; Andreas Hiergeist; Josef Koestler; André Gessner; Markus Weber; Joachim Hahn; Daniel Wolff; Frank Stämmler; Rainer Spang; Wolfgang Herr; Katja Dettmer; Ernst Holler
Indole, which is produced from l-tryptophan by commensal bacteria expressing tryptophanase, not only is an important intercellular signal in microbial communities, but also modulates mucosal barrier function and expression of pro- and anti-inflammatory genes by intestinal epithelial cells. Here, we hypothesized that decreased urinary excretion of 3-indoxyl sulfate (3-IS), the major conjugate of indole found in humans, may be a marker of gut microbiota disruption and increased risk of developing gastrointestinal (GI) graft-versus-host-disease. Using liquid chromatography/tandem mass spectrometry, 3-IS was determined in urine specimens collected weekly within the first 28 days after allogeneic stem cell transplantation (ASCT) in 131 patients. Low 3-IS levels within the first 10 days after ASCT were associated with significantly higher transplant-related mortality (P = .017) and worse overall survival (P = .05) 1 year after ASCT. Least absolute shrinkage and selection operator regression models trained on log-normalized counts of 763 operational taxonomic units derived from next-generation sequencing of the hypervariable V3 region of the 16S ribosomal RNA gene showed members of the families of Lachnospiraceae and Ruminococcaceae of the class of Clostridia to be associated with high urinary 3-IS levels, whereas members of the class of Bacilli were associated with low 3-IS levels. Risk factors of early suppression of 3-IS levels were the type of GI decontamination (P = .01), early onset of antibiotic treatment (P = .001), and recipient NOD2/CARD15 genotype (P = .04). In conclusion, our findings underscore the relevance of microbiota-derived indole and metabolites thereof in mucosal integrity and protection from inflammation.
Ilar Journal | 2015
Andreas Hiergeist; Joachim Gläsner; Udo Reischl; André Gessner
Analyzing human as well as animal microbiota composition has gained growing interest because structural components and metabolites of microorganisms fundamentally influence all aspects of host physiology. Originally dominated by culture-dependent methods for exploring these ecosystems, the development of molecular techniques such as high throughput sequencing has dramatically increased our knowledge. Because many studies of the microbiota are based on the bacterial 16S ribosomal RNA (rRNA) gene targets, they can, at least in principle, be compared to determine the role of the microbiome composition for developmental processes, host metabolism, and physiology as well as different diseases. In our review, we will summarize differences and pitfalls in current experimental protocols, including all steps from nucleic acid extraction to bioinformatical analysis which may produce variation that outweighs subtle biological differences. Future developments, such as integration of metabolomic, transcriptomic, and metagenomic data sets and standardization of the procedures, will be discussed.
International Journal of Medical Microbiology | 2016
Andreas Hiergeist; Udo Reischl; André Gessner
The composition of human as well as animal microbiota has increasingly gained in interest since metabolites and structural components of endogenous microorganisms fundamentally influence all aspects of host physiology. Since many of the bacteria are still unculturable, molecular techniques such as high-throughput sequencing have dramatically increased our knowledge of microbial communities. The majority of microbiome studies published thus far are based on bacterial 16S ribosomal RNA (rRNA) gene sequencing, so that they can, at least in principle, be compared to determine the role of the microbiome composition for host metabolism and physiology, developmental processes, as well as different diseases. However, differences in DNA preparation and purification, 16S rDNA PCR amplification, sequencing procedures and platforms, as well as bioinformatic analysis and quality control measures may strongly affect the microbiome composition results obtained in different laboratories. To systematically evaluate the comparability of results and identify the most influential methodological factors affecting these differences, identical human stool sample replicates spiked with quantified marker bacteria, and their subsequent DNA sequences were analyzed by nine different centers in an external quality assessment (EQA). While high intra-center reproducibility was observed in repetitive tests, significant inter-center differences of reported microbiota composition were obtained. All steps of the complex analysis workflow significantly influenced microbiome profiles, but the magnitude of variation caused by PCR primers for 16S rDNA amplification was clearly the largest. In order to advance microbiome research to a more standardized and routine medical diagnostic procedure, it is essential to establish uniform standard operating procedures throughout laboratories and to initiate regular proficiency testing.
Biology of Blood and Marrow Transplantation | 2017
Daniela Weber; Robert R. Jenq; Jonathan U. Peled; Ying Taur; Andreas Hiergeist; Josef Koestler; Katja Dettmer; Markus Weber; Daniel Wolff; Joachim Hahn; Eric G. Pamer; Wolfgang Herr; André Gessner; Peter J. Oefner; Marcel R.M. van den Brink; Ernst Holler
In allogeneic stem cell transplantation (ASCT), systemic broad-spectrum antibiotics are frequently used for treatment of infectious complications, but their effect on microbiota composition is still poorly understood. This retrospective analysis of 621 patients who underwent ASCT at the University Medical Center of Regensburg and Memorial Sloan Kettering Cancer Center in New York assessed the impact of timing of peritransplant antibiotic treatment on intestinal microbiota composition as well as transplant-related mortality (TRM) and overall survival. Early exposure to antibiotics was associated with lower urinary 3-indoxyl sulfate levels (P < .001) and a decrease in fecal abundance of commensal Clostridiales (P = .03) compared with late antibiotic treatment, which was particularly significant (P = .005) for Clostridium cluster XIVa in the Regensburg group. Earlier antibiotic treatment before ASCT was further associated with a higher TRM (34%, 79/236) compared with post-ASCT (21%, 62/297, P = .001) or no antibiotics (7%, 6/88, P < .001). Timing of antibiotic treatment was the dominant independent risk factor for TRM (HR, 2.0; P ≤ .001) in multivariate analysis besides increase age (HR, 2.15; P = .004), reduced Karnofsky performance status (HR, 1.47; P = .03), and female donor-male recipient sex combination (HR, 1.56; P = .02) A competing risk analysis revealed the independent effect of early initiation of antibiotics on graft-versus-host disease-related TRM (P = .004) in contrast to infection-related TRM and relapse (not significant). The poor outcome associated with early administration of antibiotic therapy that is active against commensal organisms, and specifically the possibly protective Clostridiales, calls for the use of Clostridiales-sparing antibiotics and rapid restoration of microbiota diversity after cessation of antibiotic treatment.
Mbio | 2016
Frank Stämmler; Joachim Gläsner; Andreas Hiergeist; Ernst Holler; Daniela Weber; Peter J. Oefner; André Gessner; Rainer Spang
BackgroundNext-generation 16S ribosomal RNA gene sequencing is widely used to determine the relative composition of the mammalian gut microbiomes. However, in the absence of a reference, this does not reveal alterations in absolute abundance of specific operational taxonomic units if microbial loads vary across specimens.ResultsHere we suggest the spiking of exogenous bacteria into crude specimens to quantify ratios of absolute bacterial abundances. We use the 16S rDNA read counts of the spike-in bacteria to adjust the read counts of endogenous bacteria for changes in total microbial loads. Using a series of dilutions of pooled faecal samples from mice containing defined amounts of the spike-in bacteria Salinibacter ruber, Rhizobium radiobacter and Alicyclobacillus acidiphilus, we demonstrate that spike-in-based calibration to microbial loads allows accurate estimation of ratios of absolute endogenous bacteria abundances. Applied to stool specimens of patients undergoing allogeneic stem cell transplantation, we were able to determine changes in both relative and absolute abundances of various phyla, especially the genus Enterococcus, in response to antibiotic treatment and radio-chemotherapeutic conditioning.ConclusionExogenous spike-in bacteria in gut microbiome studies enable estimation of ratios of absolute OTU abundances, providing novel insights into the structure and the dynamics of intestinal microbiomes.
Bone Marrow Transplantation | 2016
Daniela Weber; Peter J. Oefner; Katja Dettmer; Andreas Hiergeist; Josef Koestler; André Gessner; Markus Weber; Frank Stämmler; Joachim Hahn; Daniel Wolff; Wolfgang Herr; Ernst Holler
Intestinal dysbiosis has been associated with acute gastrointestinal GvHD and poor outcome following allogeneic stem cell transplantation (ASCT). To assess the effect of a switch in 2012 from ciprofloxacin/metronidazole to rifaximin for gut decontamination on intestinal microbiota composition and ASCT outcome, we retrospectively analyzed 394 patients receiving ASCT from September 2008 through June 2015. In 131 and 90 patients, respectively, urinary 3-indoxyl sulfate levels and intestinal enterococcal load were measured before conditioning and weekly within the first 28 days after ASCT. The use of rifaximin correlated with lower enterococcal positivity (6.9 vs 21.9%, P=0.05) and higher urinary 3-indoxyl sulfate concentrations (10.5 vs 4.6 μmoL/mmoL crea, P<0.001) after ASCT. Patients on rifaximin showed lower 1-year transplant-related mortality (P=0.04) and higher overall survival (P=0.008). Treatment of infectious complications with systemic antibiotics did not abrogate the beneficial effects of rifaximin on intestinal microbiota composition in the early course of ASCT and outcome. The data underscore the importance of maintaining a diverse population of symbiotic and mutualistic bacteria in the gut on ASCT outcome.
Cancer Cell | 2016
Rebecca Kesselring; Joachim Glaesner; Andreas Hiergeist; Elisabeth Naschberger; Helmut Neumann; Stefan M. Brunner; Anja K. Wege; Caroline Theresa Seebauer; Gudrun Köhl; Susanne Merkl; Roland S. Croner; Christina Hackl; Michael Stürzl; Markus F. Neurath; André Gessner; Hj Schlitt; Edward K. Geissler; Stefan Fichtner-Feigl
Colorectal cancer (CRC) is associated with loss of epithelial barrier integrity, which facilitates the interaction of the immunological microenvironment with the luminal microbiome, eliciting tumor-supportive inflammation. An important regulator of intestinal inflammatory responses is IRAK-M, a negative regulator of TLR signaling. Here we investigate the compartment-specific impact of IRAK-M on colorectal carcinogenesis using a mouse model. We demonstrate that IRAK-M is expressed in tumor cells due to combined TLR and Wnt activation. Tumor cell-intrinsic IRAK-M is responsible for regulation of microbial colonization of tumors and STAT3 protein stability in tumor cells, leading to tumor cell proliferation. IRAK-M expression in human CRCs is associated with poor prognosis. These results suggest that IRAK-M may be a potential therapeutic target for CRC treatment.
Journal of Immunology | 2016
Lena Krzyzak; Christine Seitz; Anne Urbat; Stefan Hutzler; Christian Ostalecki; Joachim Gläsner; Andreas Hiergeist; André Gessner; Thomas H. Winkler; Alexander Steinkasserer; Lars Nitschke
CD83 is a maturation marker for dendritic cells. In the B cell lineage, CD83 is expressed especially on activated B cells and on light zone B cells during the germinal center (GC) reaction. The function of CD83 during GC responses is unclear. CD83−/− mice have a strong reduction of CD4+ T cells, which makes it difficult to analyze a functional role of CD83 on B cells during GC responses. Therefore, in the present study we generated a B cell–specific CD83 conditional knockout (CD83 B-cKO) model. CD83 B-cKO B cells show defective upregulation of MHC class II and CD86 expression and impaired proliferation after different stimuli. Analyses of GC responses after immunization with various Ags revealed a characteristic shift in dark zone and light zone B cell numbers, with an increase of B cells in the dark zone of CD83 B-cKO mice. This effect was not accompanied by alterations in the level of IgG immune responses or by major differences in affinity maturation. However, an enhanced IgE response was observed in CD83 B-cKO mice. Additionally, we observed a strong competitive disadvantage of CD83-cKO B cells in GC responses in mixed bone marrow chimeras. Furthermore, infection of mice with Borrelia burgdorferi revealed a defect in bacterial clearance of CD83 B-cKO mice with a shift toward a Th2 response, indicated by a strong increase in IgE titers. Taken together, our results show that CD83 is important for B cell activation and modulates GC composition and IgE Ab responses in vivo.
Neurobiology of Aging | 2018
David A. Brenner; Andreas Hiergeist; Carolin Adis; Benjamin Mayer; André Gessner; Albert C. Ludolph; Jochen H. Weishaupt
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative motor neuron disease accompanied by both systemic and central nervous system-specific inflammation as well as deregulated energy metabolism. These potential pathogenetic factors have recently been found to mutually interact with the gut microbiota, raising the hypothesis of a link between microbiome alterations and ALS pathogenesis. The aim of our study was to assess whether ALS is associated with an altered composition of the fecal microbiota. We compared the fecal microbiota of 25 ALS patients with 32 age- and gender-matched healthy persons using 16S rRNA gene sequencing analysis. Confounding factors and secondary disease effects on the microbiome were minimized by selection of patients without dysphagia, gastrostomy, noninvasive ventilation, or reduced body mass index. Comparing the 2 carefully matched groups, the diversity and the abundance of the bacterial taxa on the different taxonomic levels as well as PICRUSt-predicted metagenomes were almost indistinguishable. Significant differences between ALS patients and healthy controls were only observed with regard to the overall number of microbial species (operational taxonomic units) and in the abundance of uncultured Ruminococcaceae. Conclusively, ALS patients do not exhibit a substantial alteration of the gut microbiota composition.
PLOS ONE | 2017
Daniela Weber; Katrin Frauenschläger; Sakhila Ghimire; Katrin Peter; Isabella Panzer; Andreas Hiergeist; Markus Weber; Daniel Kutny; Daniel Wolff; Matthias Grube; Elisabeth Huber; Peter J. Oefner; André Gessner; Thomas Hehlgans; Wolfgang Herr; Ernst Holler
Intestinal microbiota disruption is associated with acute gastrointestinal (GI) Graft-versus-Host Disease (GvHD) and poor outcome after allogeneic stem cell transplantation (ASCT). Here, in a retrospective analysis of 200 patients undergoing ASCT at the Regensburg University Medical Center, we assessed the relative expression of Paneth cell antimicrobial peptides (AMPs), Human Defensins (HD) 5 and 6 and regenerating islet-derived 3α (Reg3α), in 292 human intestinal biopsies as well as Reg3α serum levels in relation to acute GI GvHD. In the absence of GI GvHD, the relative expression of Paneth cell AMPs was significantly higher in the small intestine (duodenum to ileum) than in the stomach and large intestine (cecum to rectum) for Reg3α (p≤0.001), HD5 (p≤0.002) and HD6 (p≤0.02). Acute stage 2–4 GI GvHD was associated with reduced expression of AMPs in the small intestine (p≤0.01) in comparison to stage 0–1 disease, accompanied by a decrease in Paneth cell count in case of severe acute GI GvHD (p<0.001). The opposite held true for the large intestine as we found stage 2–4 GI GvHD correlated with significantly higher expression of HD5, HD6, and Reg3α compared to mild or no acute GI GvHD (p≤0.002). Severe GI GvHD in both the lower and the upper GI tract also correlated with higher serum concentrations of Reg3α (p = 0.002). As indirect markers of intestinal microbiome diversity low levels of urinary 3-indoxyl sulfate levels were associated with severe stages of acute GI GvHD compared to mild stage or no acute GI GvHD (p = 0.05). In conclusion, acute GI GvHD correlates with intestinal expression of HD5, HD6 and Reg3α as well as Reg3α serum levels and is associated with intestinal dysbiosis.