Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Feng Wang is active.

Publication


Featured researches published by Feng Wang.


Nature | 2010

Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping.

Feng Wang; Yu Han; C. S. Lim; Y. F. Lu; Juan Wang; Jun Xu; Hongyu Chen; Chun Zhang; Minghui Hong; Xiaogang Liu

Doping is a widely applied technological process in materials science that involves incorporating atoms or ions of appropriate elements into host lattices to yield hybrid materials with desirable properties and functions. For nanocrystalline materials, doping is of fundamental importance in stabilizing a specific crystallographic phase, modifying electronic properties, modulating magnetism as well as tuning emission properties. Here we describe a material system in which doping influences the growth process to give simultaneous control over the crystallographic phase, size and optical emission properties of the resulting nanocrystals. We show that NaYF4 nanocrystals can be rationally tuned in size (down to ten nanometres), phase (cubic or hexagonal) and upconversion emission colour (green to blue) through use of trivalent lanthanide dopant ions introduced at precisely defined concentrations. We use first-principles calculations to confirm that the influence of lanthanide doping on crystal phase and size arises from a strong dependence on the size and dipole polarizability of the substitutional dopant ion. Our results suggest that the doping-induced structural and size transition, demonstrated here in NaYF4 upconversion nanocrystals, could be extended to other lanthanide-doped nanocrystal systems for applications ranging from luminescent biological labels to volumetric three-dimensional displays.


Chemical Society Reviews | 2009

Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals

Feng Wang; Xiaogang Liu

Lanthanide ions exhibit unique luminescent properties, including the ability to convert near infrared long-wavelength excitation radiation into shorter visible wavelengths through a process known as photon upconversion. In recent years lanthanide-doped upconversion nanocrystals have been developed as a new class of luminescent optical labels that have become promising alternatives to organic fluorophores and quantum dots for applications in biological assays and medical imaging. These techniques offer low autofluorescence background, large anti-Stokes shifts, sharp emission bandwidths, high resistance to photobleaching, and high penetration depth and temporal resolution. Such techniques also show potential for improving the selectivity and sensitivity of conventional methods. They also pave the way for high throughput screening and miniaturization. This tutorial review focuses on the recent development of various synthetic approaches and possibilities for chemical tuning of upconversion properties, as well as giving an overview of biological applications of these luminescent nanocrystals.


Nature Materials | 2011

Tuning upconversion through energy migration in core–shell nanoparticles

Feng Wang; Renren Deng; Juan Wang; Qingxiao Wang; Yu Han; Haomiao Zhu; Xueyuan Chen; Xiaogang Liu

Photon upconversion is promising for applications such as biological imaging, data storage or solar cells. Here, we have investigated upconversion processes in a broad range of gadolinium-based nanoparticles of varying composition. We show that by rational design of a core-shell structure with a set of lanthanide ions incorporated into separated layers at precisely defined concentrations, efficient upconversion emission can be realized through gadolinium sublattice-mediated energy migration for a wide range of lanthanide activators without long-lived intermediary energy states. Furthermore, the use of the core-shell structure allows the elimination of deleterious cross-relaxation. This effect enables fine-tuning of upconversion emission through trapping of the migrating energy by the activators. Indeed, the findings described here suggest a general approach to constructing a new class of luminescent materials with tunable upconversion emissions by controlled manipulation of energy transfer within a nanoscopic region.


Journal of the American Chemical Society | 2008

Upconversion Multicolor Fine-Tuning: Visible to Near-Infrared Emission from Lanthanide-Doped NaYF4 Nanoparticles

Feng Wang; Xiaogang Liu

A general approach to fine-tuning the upconversion emission colors, based upon a single host source of NaYF4 nanoparticles doped with Yb3+, Tm3+, and Er3+, is presented. The emission intensity balance can be precisely controlled using different host-activator systems and dopant concentrations. The approach allows access to a wide range of luminescence emission from visible to near-infrared by single-wavelength excitation.


Analyst | 2010

Upconversion nanoparticles in biological labeling, imaging, and therapy

Feng Wang; Debapriya Banerjee; Yongsheng Liu; Xueyuan Chen; Xiaogang Liu

Upconversion refers to non-linear optical processes that convert two or more low-energy pump photons to a higher-energy output photon. After being recognized in the mid-1960s, upconversion has attracted significant research interest for its applications in optical devices such as infrared quantum counter detectors and compact solid-state lasers. Over the past decade, upconversion has become more prominent in biological sciences as the preparation of high-quality lanthanide-doped nanoparticles has become increasingly routine. Owing to their small physical dimensions and biocompatibility, upconversion nanoparticles can be easily coupled to proteins or other biological macromolecular systems and used in a variety of assay formats ranging from bio-detection to cancer therapy. In addition, intense visible emission from these nanoparticles under near-infrared excitation, which is less harmful to biological samples and has greater sample penetration depths than conventional ultraviolet excitation, enhances their prospects as luminescent stains in bio-imaging. In this article, we review recent developments in optical biolabeling and bio-imaging involving upconversion nanoparticles, simultaneously bringing to the forefront the desirable characteristics, strengths and weaknesses of these luminescent nanomaterials.


Chemical Society Reviews | 2012

Stimuli-responsive supramolecular polymeric materials

Xuzhou Yan; Feng Wang; Bo Zheng; Feihe Huang

Supramolecular materials, dynamic materials by nature, are defined as materials whose components are bridged via reversible connections and undergo spontaneous and continuous assembly/disassembly processes under specific conditions. On account of the dynamic and reversible nature of noncovalent interactions, supramolecular polymers have the ability to adapt to their environment and possess a wide range of intriguing properties, such as degradability, shape-memory, and self-healing, making them unique candidates for supramolecular materials. In this critical review, we address recent developments in supramolecular polymeric materials, which can respond to appropriate external stimuli at the fundamental level due to the existence of noncovalent interactions of the building blocks.


Journal of the American Chemical Society | 2008

One-Step, Room Temperature, Colorimetric Detection of Mercury (Hg2+) Using DNA/Nanoparticle Conjugates

Xuejia Xue; Feng Wang; Xiaogang Liu

Introduction of Hg2+ into an aqueous solution containing oligonucleotide-tethered gold nanoparticle probes and a linker oligonucleotide with a number of thymine−thymine (T−T) mismatches results in the formation of particle aggregates at room temperature with a concomitant colorimetric response. The high selectivity of this detection system is attributed to Hg2+-mediated formation of T−Hg2+−T base pairs as evidenced by an increase in a sharp melting temperature.


Angewandte Chemie | 2010

Direct Evidence of a Surface Quenching Effect on Size-Dependent Luminescence of Upconversion Nanoparticles†

Feng Wang; Juan Wang; Xiaogang Liu

Lanthanide-doped upconversion (UC) nanoparticles have shown considerable promise in biological labeling, imaging, and therapeutics. However, although current synthetic approaches allow for preparation of ultrasmall UC nanoparticles with precise control over particle morphology and emission color, smaller nanoparticles come at the expense of weaker emissions, which is a constraint that is practically impossible to surpass. Many fundamental aspects of the UC luminescence in these nanomaterials still lack sufficient understanding. In particular, several groups have observed varied relative intensity of the multi-peak UC emissions with varying particle size. The UC luminescence primarily originates from intra-configurational 4f electron transitions within the localized lanthanide dopant ions. Due to a small Bohr radius of the exciton in UC hosts and weak interactions between 4f electrons of the lanthanide dopant ions and the host matrix, the size-dependent UC luminescence can hardly be explained by classic theories, such as quantum confinement and surface plasmon resonance related to optical properties of semiconductor and metal nanoparticles. Although phonon confinement has been used to account for the size-dependent UC luminescence, it has been a matter of much debate, owing to the constraints typically associated with solid-state sample measurements at extreme conditions (for example, low temperatures of ca. 10 K) and exclusion of vibrational energies and optical traps arising from particle surface. To this end, a surface quenching effect is proposed and correlated with size-dependent UC luminescence. However, the surface quenching effect has not been conclusively established, largely because of the lack of direct evidence on surface-quenching-induced luminescence modulation of different-sized particles. Herein, we present a comparative spectroscopic investigation of a series of Yb/Tm co-doped hexagonal-phase NaGdF4 nanoparticles (10, 15, and 25 nm) with or without a thin (ca. 2.5 nm) surface protection layer. We show that, through the thin layer coating, the characteristic optical features (such as relative emission intensities) of these nanoparticles can be retained, thereby providing direct evidence to support the surface quenching effect responsible for the size-dependent UC luminescence. Hexagonal-phase NaGdF4 was chosen as the model host system owing to its ability to render high UC efficiency and the benefits of producing relatively small (< 20 nm) and uniform nanoparticles. Furthermore, the Gd host ion that features half-filled 4f orbitals is relatively inert in the luminescence process and thus has negligible interaction with the dopant ions. To provide a direct comparison over a broad wavelength range between the relative emission intensity of the particles, the Tm ion with a ladder-like arrangement of energy levels was selected as the activator capable of generating upconverted emission peaks that span from ultraviolet (UV) to near-infrared (NIR) spectral regions (Figure 1a).


Nanotechnology | 2006

Luminescent nanomaterials for biological labelling

Feng Wang; Wee Beng Tan; Yong Zhang; Xianping Fan; Minquan Wang

The use of labelling or staining agents has greatly assisted the study of complex biological interactions in the field of biology. In particular, fluorescent labelling of biomolecules has been demonstrated as an indispensable tool in many biological studies. Types of fluorescent labelling agents that are commonly used include conventional classes of organic fluorophores such as fluorescein and cyanine dyes, as well as newer types of inorganic nanoparticles such as QDs, and novel fluorescent latex/silica nanobeads. The newer classes of fluorescent labels are gaining increasing popularity in place of their predecessors due to their better optical properties such as possessing an enhanced photostability and a larger Stokes shift over conventional organic fluorophores, for example. This paper gives an overview of the recent advances on these luminescent nanomaterials with emphases on their optical characteristics that are crucial in fluorescence microscopy, both advantages and limitations in their usage as well as challenges they face, and puts forward the future direction of fluorescent labels in the area of biolabelling.


Journal of the American Chemical Society | 2008

Self-Sorting Organization of Two Heteroditopic Monomers to Supramolecular Alternating Copolymers

Feng Wang; Chenyou Han; Chunlin He; Qizhong Zhou; Jinqiang Zhang; Cong Wang; Ning Li; Feihe Huang

Self-sorting organization of two AB-type heteroditopic monomers led to the formation of linear supramolecular alternating copolymers driven by host-guest noncovalent interactions based on the bis(p-phenylene)-34-crown-10/paraquat derivative and dibenzo-24-crown-8/dibenzylammonium salt recognition motifs as confirmed by 1H NMR, cyclic voltammetry, dynamic light scattering, viscosity measurements, and scanning electron microscopy.

Collaboration


Dive into the Feng Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaogang Liu

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Xian Chen

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tianying Sun

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Bing Chen

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Wei Kong

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guangyu Zhu

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge