Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jorma Ilonen is active.

Publication


Featured researches published by Jorma Ilonen.


The ISME Journal | 2011

Toward defining the autoimmune microbiome for type 1 diabetes

Adriana Giongo; Kelsey A. Gano; David B. Crabb; Nabanita Mukherjee; Luis L Novelo; George Casella; Jennifer C. Drew; Jorma Ilonen; Mikael Knip; Heikki Hyöty; Riitta Veijola; Tuula Simell; Olli Simell; Josef Neu; Clive Wasserfall; Desmond A. Schatz; Mark A. Atkinson; Eric W. Triplett

Several studies have shown that gut bacteria have a role in diabetes in murine models. Specific bacteria have been correlated with the onset of diabetes in a rat model. However, it is unknown whether human intestinal microbes have a role in the development of autoimmunity that often leads to type 1 diabetes (T1D), an autoimmune disorder in which insulin-secreting pancreatic islet cells are destroyed. High-throughput, culture-independent approaches identified bacteria that correlate with the development of T1D-associated autoimmunity in young children who are at high genetic risk for this disorder. The level of bacterial diversity diminishes overtime in these autoimmune subjects relative to that of age-matched, genotype-matched, nonautoimmune individuals. A single species, Bacteroides ovatus, comprised nearly 24% of the total increase in the phylum Bacteroidetes in cases compared with controls. Conversely, another species in controls, represented by the human firmicute strain CO19, represented nearly 20% of the increase in Firmicutes compared with cases overtime. Three lines of evidence are presented that support the notion that, as healthy infants approach the toddler stage, their microbiomes become healthier and more stable, whereas, children who are destined for autoimmunity develop a microbiome that is less diverse and stable. Hence, the autoimmune microbiome for T1D may be distinctly different from that found in healthy children. These data also suggest bacterial markers for the early diagnosis of T1D. In addition, bacteria that negatively correlated with the autoimmune state may prove to be useful in the prevention of autoimmunity development in high-risk children.


JAMA | 2013

Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children.

Anette-G. Ziegler; Marian Rewers; Olli Simell; Tuula Simell; Johanna Lempainen; Andrea K. Steck; Christiane Winkler; Jorma Ilonen; Riitta Veijola; Mikael Knip; Ezio Bonifacio; George S. Eisenbarth

IMPORTANCE Type 1 diabetes usually has a preclinical phase identified by circulating islet autoantibodies, but the rate of progression to diabetes after seroconversion to islet autoantibodies is uncertain. OBJECTIVE To determine the rate of progression to diabetes after islet autoantibody seroconversion. DESIGN, SETTING, AND PARTICIPANTS Data were pooled from prospective cohort studies performed in Colorado (recruitment, 1993-2006), Finland (recruitment, 1994-2009), and Germany (recruitment, 1989-2006) examining children genetically at risk for type 1 diabetes for the development of insulin autoantibodies, glutamic acid decarboxylase 65 (GAD65) autoantibodies, insulinoma antigen 2 (IA2) autoantibodies, and diabetes. Participants were all children recruited and followed up in the 3 studies (Colorado, 1962; Finland, 8597; Germany, 2818). Follow-up assessment in each study was concluded by July 2012. MAIN OUTCOMES AND MEASURES The primary analysis was the diagnosis of type 1 diabetes in children with 2 or more autoantibodies. The secondary analysis was the diagnosis of type 1 diabetes in children with 1 autoantibody or no autoantibodies. RESULTS Progression to type 1 diabetes at 10-year follow-up after islet autoantibody seroconversion in 585 children with multiple islet autoantibodies was 69.7% (95% CI, 65.1%-74.3%), and in 474 children with a single islet autoantibody was 14.5% (95% CI, 10.3%-18.7%). Risk of diabetes in children who had no islet autoantibodies was 0.4% (95% CI, 0.2%-0.6%) by the age of 15 years. Progression to type 1 diabetes in the children with multiple islet autoantibodies was faster for children who had islet autoantibody seroconversion younger than age 3 years (hazard ratio [HR], 1.65 [95% CI, 1.30-2.09; P < .001]; 10-year risk, 74.9% [95% CI, 69.7%-80.1%]) vs children 3 years or older (60.9% [95% CI, 51.5%-70.3%]); for children with the human leukocyte antigen (HLA) genotype DR3/DR4-DQ8 (HR, 1.35 [95% CI, 1.09-1.68; P = .007]; 10-year risk, 76.6% [95% CI, 69.2%-84%]) vs other HLA genotypes (66.2% [95% CI, 60.2%-72.2%]); and for girls (HR, 1.28 [95% CI, 1.04-1.58; P = .02];10-year risk, 74.8% [95% CI, 68.0%-81.6%]) vs boys (65.7% [95% CI, 59.3%-72.1%]). CONCLUSIONS AND RELEVANCE The majority of children at risk of type 1 diabetes who had multiple islet autoantibody seroconversion progressed to diabetes over the next 15 years. Future prevention studies should focus on this high-risk population.


Clinical & Experimental Allergy | 2009

Maternal vitamin D intake during pregnancy is inversely associated with asthma and allergic rhinitis in 5‐year‐old children

Maijaliisa Erkkola; Minna Kaila; Bright I. Nwaru; Carina Kronberg-Kippilä; Suvi Ahonen; Jaakko Nevalainen; Riitta Veijola; Juha Pekkanen; Jorma Ilonen; Olli Simell; Mikael Knip; Suvi M. Virtanen

Background Vitamin D is known to have a number of immunological effects and it may play a role in preventing allergic diseases.


PLOS ONE | 2011

Gut Microbiome Metagenomics Analysis Suggests a Functional Model for the Development of Autoimmunity for Type 1 Diabetes

Christopher T. Brown; Austin G. Davis-Richardson; Adriana Giongo; Kelsey A. Gano; David B. Crabb; Nabanita Mukherjee; George Casella; Jennifer C. Drew; Jorma Ilonen; Mikael Knip; Heikki Hyöty; Riitta Veijola; Tuula Simell; Olli Simell; Josef Neu; Clive Wasserfall; Desmond A. Schatz; Mark A. Atkinson; Eric W. Triplett

Recent studies have suggested a bacterial role in the development of autoimmune disorders including type 1 diabetes (T1D). Over 30 billion nucleotide bases of Illumina shotgun metagenomic data were analyzed from stool samples collected from four pairs of matched T1D case-control subjects collected at the time of the development of T1D associated autoimmunity (i.e., autoantibodies). From these, approximately one million open reading frames were predicted and compared to the SEED protein database. Of the 3,849 functions identified in these samples, 144 and 797 were statistically more prevalent in cases and controls, respectively. Genes involved in carbohydrate metabolism, adhesions, motility, phages, prophages, sulfur metabolism, and stress responses were more abundant in cases while genes with roles in DNA and protein metabolism, aerobic respiration, and amino acid synthesis were more common in controls. These data suggest that increased adhesion and flagella synthesis in autoimmune subjects may be involved in triggering a T1D associated autoimmune response. Extensive differences in metabolic potential indicate that autoimmune subjects have a functionally aberrant microbiome. Mining 16S rRNA data from these datasets showed a higher proportion of butyrate-producing and mucin-degrading bacteria in controls compared to cases, while those bacteria that produce short chain fatty acids other than butyrate were higher in cases. Thus, a key rate-limiting step in butyrate synthesis is more abundant in controls. These data suggest that a consortium of lactate- and butyrate-producing bacteria in a healthy gut induce a sufficient amount of mucin synthesis to maintain gut integrity. In contrast, non-butyrate-producing lactate-utilizing bacteria prevent optimal mucin synthesis, as identified in autoimmune subjects.


Cell Host & Microbe | 2015

The Dynamics of the Human Infant Gut Microbiome in Development and in Progression toward Type 1 Diabetes

Aleksandar D. Kostic; Dirk Gevers; Heli Siljander; Tommi Vatanen; Tuulia Hyötyläinen; Anu-Maaria Hämäläinen; Aleksandr Peet; Vallo Tillmann; Päivi Pöhö; Ismo Mattila; Harri Lähdesmäki; Eric A. Franzosa; Outi Vaarala; Marcus C. de Goffau; Hermie J. M. Harmsen; Jorma Ilonen; Suvi Virtanen; Clary B. Clish; Matej Orešič; Curtis Huttenhower; Mikael Knip; Ramnik J. Xavier

Colonization of the fetal and infant gut microbiome results in dynamic changes in diversity, which can impact disease susceptibility. To examine the relationship between human gut microbiome dynamics throughout infancy and type 1 diabetes (T1D), we examined a cohort of 33 infants genetically predisposed to T1D. Modeling trajectories of microbial abundances through infancy revealed a subset of microbial relationships shared across most subjects. Although strain composition of a given species was highly variable between individuals, it was stable within individuals throughout infancy. Metabolic composition and metabolic pathway abundance remained constant across time. A marked drop in alpha-diversity was observed in T1D progressors in the time window between seroconversion and T1D diagnosis, accompanied by spikes in inflammation-favoring organisms, gene functions, and serum and stool metabolites. This work identifies trends in the development of the human infant gut microbiome along with specific alterations that precede T1D onset and distinguish T1D progressors from nonprogressors.


Journal of Experimental Medicine | 2008

Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes

Matej Orešič; Satu Simell; Marko Sysi-Aho; Kirsti Näntö-Salonen; Tuulikki Seppänen-Laakso; Vilhelmiina Parikka; Mikko Katajamaa; Anne Hekkala; Ismo Mattila; Päivi Keskinen; Laxman Yetukuri; Arja Reinikainen; Jyrki Lähde; Tapani Suortti; Jari Hakalax; Tuula Simell; Heikki Hyöty; Riitta Veijola; Jorma Ilonen; Riitta Lahesmaa; Mikael Knip; Olli Simell

The risk determinants of type 1 diabetes, initiators of autoimmune response, mechanisms regulating progress toward β cell failure, and factors determining time of presentation of clinical diabetes are poorly understood. We investigated changes in the serum metabolome prospectively in children who later progressed to type 1 diabetes. Serum metabolite profiles were compared between sample series drawn from 56 children who progressed to type 1 diabetes and 73 controls who remained nondiabetic and permanently autoantibody negative. Individuals who developed diabetes had reduced serum levels of succinic acid and phosphatidylcholine (PC) at birth, reduced levels of triglycerides and antioxidant ether phospholipids throughout the follow up, and increased levels of proinflammatory lysoPCs several months before seroconversion to autoantibody positivity. The lipid changes were not attributable to HLA-associated genetic risk. The appearance of insulin and glutamic acid decarboxylase autoantibodies was preceded by diminished ketoleucine and elevated glutamic acid. The metabolic profile was partially normalized after the seroconversion. Autoimmunity may thus be a relatively late response to the early metabolic disturbances. Recognition of these preautoimmune alterations may aid in studies of disease pathogenesis and may open a time window for novel type 1 diabetes prevention strategies.


The Lancet | 2008

Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial

Kirsti Näntö-Salonen; Antti Kupila; Satu Simell; Heli Siljander; Tiina Salonsaari; Anne Hekkala; Sari Korhonen; Risto Erkkola; Jukka Sipilä; Lotta Haavisto; Marja Siltala; Juhani Tuominen; Jari Hakalax; Heikki Hyöty; Jorma Ilonen; Riitta Veijola; Tuula Simell; Mikael Knip; Olli Simell

BACKGROUND In mouse models of diabetes, prophylactic administration of insulin reduced incidence of the disease. We investigated whether administration of nasal insulin decreased the incidence of type 1 diabetes, in children with HLA genotypes and autoantibodies increasing the risk of the disease. METHODS At three university hospitals in Turku, Oulu, and Tampere (Finland), we analysed cord blood samples of 116 720 consecutively born infants, and 3430 of their siblings, for the HLA-DQB1 susceptibility alleles for type 1 diabetes. 17 397 infants and 1613 siblings had increased genetic risk, of whom 11 225 and 1574, respectively, consented to screening of diabetes-associated autoantibodies at every 3-12 months. In a double-blind trial, we randomly assigned 224 infants and 40 siblings positive for two or more autoantibodies, in consecutive samples, to receive short-acting human insulin (1 unit/kg; n=115 and n=22) or placebo (n=109 and n=18) once a day intranasally. We used a restricted randomisation, stratified by site, with permuted blocks of size two. Primary endpoint was diagnosis of diabetes. Analysis was by intention to treat. The study was terminated early because insulin had no beneficial effect. This study is registered with ClinicalTrials.gov, number NCT00223613. FINDINGS Median duration of the intervention was 1.8 years (range 0-9.7). Diabetes was diagnosed in 49 index children randomised to receive insulin, and in 47 randomised to placebo (hazard ratio [HR] 1.14; 95% CI 0.73-1.77). 42 and 38 of these children, respectively, continued treatment until diagnosis, with yearly rates of diabetes onset of 16.8% (95% CI 11.7-21.9) and 15.3% (10.5-20.2). Seven siblings were diagnosed with diabetes in the insulin group, versus six in the placebo group (HR 1.93; 0.56-6.77). In all randomised children, diabetes was diagnosed in 56 in the insulin group, and 53 in the placebo group (HR 0.98; 0.67-1.43, p=0.91). INTERPRETATION In children with HLA-conferred susceptibility to diabetes, administration of nasal insulin, started soon after detection of autoantibodies, could not be shown to prevent or delay type 1 diabetes.


Diabetologia | 2001

Feasibility of genetic and immunological prediction of Type I diabetes in a population-based birth cohort

A. Kupila; P. Muona; Tuula Simell; P. Arvilommi; H. Savolainen; A.-M. Hämäläinen; Sari Korhonen; T. Kimpimäki; Minna Sjöroos; Jorma Ilonen; Mikael Knip; Olli Simell

Aims/hypothesis. Population-wide genetic screening of susceptibility to multifactorial diseases will become relevant as knowledge of the pathogenesis of these diseases increases and preventive interventions are identified. Methods. Feasibility and acceptance of neonatal genetic screening for Type I (insulin-dependent) diabetes mellitus susceptibility and adherence of the at-risk children to frequent autoantibody follow-up were studied. Screening was offered to all families. The infants with HLA-DQB1 genotypes *02/*0302 and *0302/x (x¿*02, *0301, *0602) were invited to autoantibody follow-up. The children who developed signs of β-cell autoimmunity were invited to a separate prevention trial. Results. The parents of 31 526 babies born between November 1994 and April 1999 (94.4 % of those eligible) agreed to genetic screening. We found that 4651 infants (14.8 %) had increased genetic risk (2.5 to 15 times that of the general population) for Type I (insulin-dependent) diabetes mellitus, and 80 % of them joined the autoantibody surveillance. At the age of 1, 2, 3 and 4 years, 74, 69, 68 and 76 % of the at-risk children, respectively, attended the follow-up. A total of 17 of the 22 children (77 %) who were born during the study period and have developed diabetes carry the risk genotypes we currently use for screening. Conclusions/interpretation. Population-based screening of genetic susceptibility for Type I diabetes, linked with a possibility to participate later in a prevention trial, is highly accepted in Finland and identifies about 75 % of those developing diabetes at an early age. Families adhere well to the frequent measurement of signs of β-cell autoimmunity in the children at-risk. [Diabetologia (2001) 44: 290–297]


Diabetes | 2013

Fecal Microbiota Composition Differs Between Children With β-Cell Autoimmunity and Those Without

Marcus C. de Goffau; Kristiina Luopajärvi; Mikael Knip; Jorma Ilonen; Terhi Ruohtula; Taina Härkönen; L. Orivuori; Saara Hakala; Gjalt W. Welling; Hermie J. M. Harmsen; Outi Vaarala

The role of the intestinal microbiota as a regulator of autoimmune diabetes in animal models is well-established, but data on human type 1 diabetes are tentative and based on studies including only a few study subjects. To exclude secondary effects of diabetes and HLA risk genotype on gut microbiota, we compared the intestinal microbiota composition in children with at least two diabetes-associated autoantibodies (n = 18) with autoantibody-negative children matched for age, sex, early feeding history, and HLA risk genotype using pyrosequencing. Principal component analysis indicated that a low abundance of lactate-producing and butyrate-producing species was associated with β-cell autoimmunity. In addition, a dearth of the two most dominant Bifidobacterium species, Bifidobacterium adolescentis and Bifidobacterium pseudocatenulatum, and an increased abundance of the Bacteroides genus were observed in the children with β-cell autoimmunity. We did not find increased fecal calprotectin or IgA as marker of inflammation in children with β-cell autoimmunity. Functional studies related to the observed alterations in the gut microbiome are warranted because the low abundance of bifidobacteria and butyrate-producing species could adversely affect the intestinal epithelial barrier function and inflammation, whereas the apparent importance of the Bacteroides genus in development of type 1 diabetes is insufficiently understood.


The New England Journal of Medicine | 1989

A Comparison of Childhood and Adult Type I Diabetes Mellitus

Jukka Karjalainen; Pasi Salmela; Jorma Ilonen; Heljä-Marja Surcel; Mikael Knip

The incidence rate of insulin-dependent (Type I) diabetes mellitus is bimodal: one peak occurs close to puberty, and the other in the fifth decade. To evaluate possible differences in these forms of the disease, we examined the clinical, biochemical, autoimmune, and genetic features of 82 children and adolescents (1.3 to 18.2 years old) and 44 adults (20.0 to 55.8 years old) when they presented with Type I diabetes. The mean (+/- SEM) duration of symptoms before diagnosis was longer in the adults (7.5 +/- 1.0 vs. 3.9 +/- 0.4 weeks; P less than 0.001), and their serum C-peptide concentrations at diagnosis were higher (0.29 +/- 0.03 vs. 0.17 +/- 0.01 nmol per liter; P less than 0.001), suggesting that they had more residual beta-cell function. There were no significant differences between the two groups in sex ratio, blood glucose levels, hemoglobin A1 values, degree of metabolic decompensation, or frequency of Type I diabetes in first-degree relatives. Thirty-four of 80 children tested (42.5 percent) were positive for insulin autoantibodies, as compared with only 1 of 26 adults (3.8 percent; P less than 0.001). However, the frequencies of islet-cell autoantibodies were similar in the adults and children (conventional autoantibodies, both 81 percent; complement-fixing autoantibodies, 46.2 percent and 60 percent). More children than adults were heterozygous for both HLA-Dw3/4 antigens (26.6 percent vs. 9.8 percent; P less than 0.05) and HLA-DR3/4 antigens (36.6 percent vs. 12.5 percent; P less than 0.05). We conclude that Type I diabetes that begins in adulthood is characterized by a longer symptomatic period before diagnosis, better preservation of residual beta-cell function, and lower frequencies of insulin autoantibodies and HLA-D3/D4 heterozygosity than Type I diabetes that begins in childhood or adolescence.

Collaboration


Dive into the Jorma Ilonen's collaboration.

Top Co-Authors

Avatar

Mikael Knip

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar

Olli Simell

Turku University Hospital

View shared research outputs
Top Co-Authors

Avatar

Riitta Veijola

Oulu University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suvi M. Virtanen

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Outi Vaarala

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helena Reijonen

Virginia Mason Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge