Joyce E. Sorrell
University of Cincinnati
Publication
Featured researches published by Joyce E. Sorrell.
Surgery for Obesity and Related Diseases | 2016
Deanna M. Arble; Joshua W. Pressler; Joyce E. Sorrell; Rachel Wevrick; Darleen A. Sandoval
BACKGROUND Prader-Willi syndrome (PWS) is a genetic disorder characterized by hyperphagia, obesity, cardiopulmonary diseases, and increased mortality. Although successful weight loss improves health in PWS, few treatments cause sustained weight loss in obese patients let alone obese individuals with PWS. OBJECTIVES The present study uses the Magel2 knockout (KO) mouse, an animal model of PWS, to conduct a preclinical study on the efficacy of sleeve gastrectomy (SG) in PWS. SETTING Academic research laboratory, United States. METHODS We performed sham or SG surgeries in 24- to 28-week-old male Magel2 KO and wild-type littermate control mice (WT) who had been maintained on a high-fat diet for 10 weeks. We monitored weight, food intake, and fat and lean mass pre- and postoperatively. Fasting glucose, glucose tolerance, and counter-regulation were measured postoperatively. RESULTS Magel2 KO animals had similar recovery and mortality rates compared with WT. SG resulted in similar weight loss, specifically loss of fat but not lean mass, in both Magel2 KO and WT mice. SG also resulted in significantly lower fasting glucose levels and a reduction in fat intake in both Magel2 KO and WT mice. We also found that Magel2 KO mice failed to increase their food intake in response to the glucoprivic agent 2-deoxy-D-glucose, suggesting impaired glucose counter-regulation, but this occurred regardless of surgical status. All results were considered significant when P< .05. CONCLUSION We find in this mouse model of PWS, SG is a well-tolerated, effective strategy for weight and fat loss.
Endocrinology | 2015
Deanna Marie Arble; Jenna Holland; Nickki Ottaway; Joyce E. Sorrell; Joshua W. Pressler; Rachel L. Morano; Stephen C. Woods; Randy J. Seeley; James P. Herman; Darleen A. Sandoval; Diego Perez-Tilve
The melanocortin system directs diverse physiological functions from coat color to body weight homoeostasis. A commonality among melanocortin-mediated processes is that many animals modulate similar processes on a circannual basis in response to longer, summer days, suggesting an underlying link between circadian biology and the melanocortin system. Despite key neuroanatomical substrates shared by both circadian and melanocortin-signaling pathways, little is known about the relationship between the two. Here we identify a link between circadian disruption and the control of glucose homeostasis mediated through the melanocortin-4 receptor (Mc4r). Mc4r-deficient mice exhibit exaggerated circadian fluctuations in baseline blood glucose and glucose tolerance. Interestingly, exposure to lighting conditions that disrupt circadian rhythms improve their glucose tolerance. This improvement occurs through an increase in glucose clearance by skeletal muscle and is food intake and body weight independent. Restoring Mc4r expression to the paraventricular nucleus prevents the improvement in glucose tolerance, supporting a role for the paraventricular nucleus in the integration of circadian light cues and metabolism. Altogether these data suggest that Mc4r signaling plays a protective role in minimizing glucose fluctuations due to circadian rhythms and environmental light cues and demonstrate a previously undiscovered connection between circadian biology and glucose metabolism mediated through the melanocortin system.
American Journal of Physiology-endocrinology and Metabolism | 2014
X Joram D. Mul; Denovan P. Begg; April Haller; Josh W. Pressler; Joyce E. Sorrell; Stephen C. Woods; Robert V. Farese; Randy J. Seeley; Darleen A. Sandoval
Vertical sleeve gastrectomy (VSG) is currently one of the most effective treatments for obesity. Despite recent developments, the underlying mechanisms that contribute to the metabolic improvements following bariatric surgery remain unresolved. VSG reduces postprandial intestinal triglyceride (TG) production, but whether the effects of VSG on intestinal metabolism are related to metabolic outcomes has yet to be established. The lipid synthesis enzyme acyl CoA:monoacylglycerol acyltransferase-2 (Mogat2; MGAT2) plays a crucial role in the assimilation of dietary fat in the intestine and in regulation of adiposity stores as well. Given the phenotypic similarities between VSG-operated and MGAT2-deficient animals, we reasoned that this enzyme could also have a key role in mediating the metabolic benefits of VSG. However, VSG reduced body weight and fat mass and improved glucose metabolism similarly in whole body MGAT2-deficient (Mogat2(-/-)) mice and wild-type littermates. Furthermore, along with an increase in energy expenditure, surgically naive Mogat2(-/-) mice had altered macronutrient preference, shifting preference away from fat and toward carbohydrates, and increased locomotor activity. Collectively, these data suggest that the beneficial effects of VSG on body weight and glucose metabolism are independent of MGAT2 activity and rather that they are separate from the effects of MGAT2 deficiency. Because MGAT2 inhibitors are proposed as a pharmacotherapeutic option for obesity, our data suggest that, in addition to increasing energy expenditure, shifting macronutrient preference away from fat could be another important mechanism by which these compounds could contribute to weight loss.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2016
Bhushan Vilas Kulkarni; Kathleen LaSance; Joyce E. Sorrell; Lisa Lemen; Stephen C. Woods; Randy J. Seeley; Darleen A. Sandoval
The mechanisms involved in the weight loss seen after vertical sleeve gastrectomy (VSG) are not clear. The rat stomach has two morphologically and functionally distinct proximal and distal parts. The rat model for VSG involves complete removal of the proximal part and 80% removal of the distal part along the greater curvature. The purpose of this study was to understand the potential independent contributions of removal of these distinct gastric sections to VSG outcomes. We prepared four surgical groups of male Long-Evans rats: VSG, sham surgery (control), selective proximal section removal (PR), and selective distal section removal (DR). Gastric emptying rate (GER) was highest after VSG compared with all other groups. However, PR, in turn, had significantly greater GER compared with both DR and sham groups. The surgery-induced weight loss followed the same pattern with VSG causing the greatest weight loss and PR having greater weight loss compared with DR and sham groups. The results were robust for rats fed regular chow or a high-fat diet. Body mass analysis revealed that the weight loss was due to the loss of fat mass, and there was no change in lean mass after the surgeries. In conclusion, removal of the proximal stomach contributes to most, but not all, of the physiological impact of VSG.
Biology of Sex Differences | 2017
Bernadette E. Grayson; Ruth Gutierrez-Aguilar; Joyce E. Sorrell; Emily K. Matter; Michelle R. Adams; Philip N. Howles; Rebekah Karns; Randy J. Seeley; Darleen A. Sandoval
BackgroundEighty percent of patients who receive bariatric surgery are women, yet the majority of preclinical studies are in male rodents. Because sex differences drive hepatic gene expression and overall lipid metabolism, we sought to determine whether sex differences were also apparent in these endpoints in response to bariatric surgery.MethodsTwo cohorts of age-matched virgin male and female Long-Evans rats were placed on a high fat diet for 3 weeks and then received either Sham or vertical sleeve gastrectomy (VSG), a surgery which resects 80% of the stomach with no intestinal rearrangement.ResultsEach sex exhibited significantly decreased body weight due to a reduction in fat mass relative to Sham controls (p < 0.05). Microarray and follow-up qPCR on liver revealed striking sex differences in gene expression after VSG that reflected a down-regulation of hepatic lipid metabolism and an up-regulation of hepatic inflammatory pathways in females vs. males after VSG. While the males had a significant reduction in hepatic lipids after VSG, there was no reduction in females. Ad lib-fed and fasting circulating triglycerides, and postprandial chylomicron production were significantly lower in VSG relative to Sham animals of both sexes (p < 0.01). However, hepatic VLDL production, highest in sham-operated females, was significantly reduced by VSG in females but not males.ConclusionsTaken together, although both males and females lose weight and improve plasma lipids, there are large-scale sex differences in hepatic gene expression and consequently hepatic lipid metabolism after VSG.
Alcoholism: Clinical and Experimental Research | 2007
Elizabeth A. Duncan; Joyce E. Sorrell; Antoine Roger Adamantidis; Therese Rider; Ronald J. Jandacek; Randy J. Seeley; Bernard Lakaye; Stephen C. Woods
Gastroenterology | 2012
Darleen A. Sandoval; Adam Dunki-Jacobs; Joyce E. Sorrell; Randy J. Seeley; David A. D'Alessio
Archive | 2010
Randy J. Seeley; Haifei Shi; April D. Strader; Joyce E. Sorrell; James B. Chambers; W. F. Schwindinger; B. M. Borrell; L. C. Waldman; J. D. Robishaw