Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jun Takahashi is active.

Publication


Featured researches published by Jun Takahashi.


Molecular and Cellular Neuroscience | 1997

The Adult Rat Hippocampus Contains Primordial Neural Stem Cells

Theo D. Palmer; Jun Takahashi; Fred H. Gage

Adult-derived hippocampal progenitors generate neurons, astrocytes, and oligodendrocytes in vitro and following grafting into the adult brain. Although these progenitors have a considerable capacity for in vitro self renewal, it is not known if each lineage is generated by separate committed precursors or by multipotent stem cells. By genetic marking, we have followed individual cells through the process of proliferative expansion, commitment, and differentiation. All three lineages are generated by single marked cells and the relative proportions of each lineage can be strongly influenced by environmental cues. Differentiation is accompanied by a characteristic progression of lineage-specific markers and can be potentiated by retinoic acid, elevated cyclic AMP, or neurotrophic factors. The ability to genetically mark and clone normal diploid hippocampal progenitors provides the first definitive evidence that multipotent neural stem cells exist outside of the adult striatal subventricular zone and supports the hypothesis that FGF-2-responsive neural stem cells may be broadly distributed in the adult brain.


Nature Biotechnology | 2007

A ROCK inhibitor permits survival of dissociated human embryonic stem cells

Kiichi Watanabe; Morio Ueno; Daisuke Kamiya; Ayaka Nishiyama; Michiru Matsumura; Takafumi Wataya; Jun Takahashi; Satomi Nishikawa; Shin-Ichi Nishikawa; Keiko Muguruma; Yoshiki Sasai

Poor survival of human embryonic stem (hES) cells after cell dissociation is an obstacle to research, hindering manipulations such as subcloning. Here we show that application of a selective Rho-associated kinase (ROCK) inhibitor, Y-27632, to hES cells markedly diminishes dissociation-induced apoptosis, increases cloning efficiency (from ∼1% to ∼27%) and facilitates subcloning after gene transfer. Furthermore, dissociated hES cells treated with Y-27632 are protected from apoptosis even in serum-free suspension (SFEB) culture and form floating aggregates. We demonstrate that the protective ability of Y-27632 enables SFEB-cultured hES cells to survive and differentiate into Bf1+ cortical and basal telencephalic progenitors, as do SFEB-cultured mouse ES cells.


Nature Methods | 2011

A more efficient method to generate integration-free human iPS cells

Keisuke Okita; Yasuko Matsumura; Yoshiko Sato; Aki Okada; Asuka Morizane; Satoshi Okamoto; Hyenjong Hong; Masato Nakagawa; Koji Tanabe; Ken-ichi Tezuka; Toshiyuki Shibata; Takahiro Kunisada; Masayo Takahashi; Jun Takahashi; Hiroh Saji; Shinya Yamanaka

We report a simple method, using p53 suppression and nontransforming L-Myc, to generate human induced pluripotent stem cells (iPSCs) with episomal plasmid vectors. We generated human iPSCs from multiple donors, including two putative human leukocyte antigen (HLA)-homozygous donors who match ∼20% of the Japanese population at major HLA loci; most iPSCs are integrated transgene-free. This method may provide iPSCs suitable for autologous and allologous stem-cell therapy in the future.


Journal of Clinical Investigation | 2005

Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model

Yasushi Takagi; Jun Takahashi; Hidemoto Saiki; Asuka Morizane; Takuya Hayashi; Yo Kishi; Hitoshi Fukuda; Yo Okamoto; Masaomi Koyanagi; Makoto Ideguchi; Hideki Hayashi; Takayuki Imazato; Hiroshi Kawasaki; Hirofumi Suemori; Shigeki Omachi; Hidehiko Iida; Nobuyuki Itoh; Norio Nakatsuji; Yoshiki Sasai; Nobuo Hashimoto

Parkinson disease (PD) is a neurodegenerative disorder characterized by loss of midbrain dopaminergic (DA) neurons. ES cells are currently the most promising donor cell source for cell-replacement therapy in PD. We previously described a strong neuralizing activity present on the surface of stromal cells, named stromal cell-derived inducing activity (SDIA). In this study, we generated neurospheres composed of neural progenitors from monkey ES cells, which are capable of producing large numbers of DA neurons. We demonstrated that FGF20, preferentially expressed in the substantia nigra, acts synergistically with FGF2 to increase the number of DA neurons in ES cell-derived neurospheres. We also analyzed the effect of transplantation of DA neurons generated from monkey ES cells into 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated (MPTP-treated) monkeys, a primate model for PD. Behavioral studies and functional imaging revealed that the transplanted cells functioned as DA neurons and attenuated MPTP-induced neurological symptoms.


Journal of Neurobiology | 1999

Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem cell cultures.

Jun Takahashi; Theo D. Palmer; Fred H. Gage

The adult rat hippocampus contains fibroblast growth factor 2-responsive stem cells that are self-renewing and have the ability to generate both neurons and glia in vitro, but little is known about the molecular events that regulate stem cell differentiation. Hippocampus-derived stem cell clones were used to examine the effects of retinoic acid (RA) on neuronal differentiation. Exposure to RA caused an immediate up-regulation of NeuroD, increased p21 expression, and concurrent exit from cell cycle. These changes were accompanied by a threefold increase in the number of cells differentiating into immature neurons. An accompanying effect of RA was to sustain or up-regulate trkA, trkB, trkC, and p75NGFR expression. Without RA treatment, cells were minimally responsive to neurotrophins (NTs), whereas the sequential application of RA followed by brain-derived neurotrophic factor or NT-3 led to a significant increase in neurons displaying mature y-a-minobutyric acid, acetylcholinesterase, tyrosine hydroxylase, or calbindin phenotypes. Although NTs promoted maturation, they had little effect on the total number of neurons generated, suggesting that RA and neurotrophins acted at distinct stages in neurogenesis. RA first promoted the acquisition of a neuronal fate, and NTs subsequently enhanced maturation by way of RA-dependent expression of the Trk receptors. In combination, these sequential effects were sufficient to stimulate stem cell-derived progenitors to differentiate into neurons displaying a variety of transmitter phenotypes.


Stem Cells | 2006

Transplantation of Human Embryonic Stem Cell‐Derived Cells to a Rat Model of Parkinson's Disease: Effect of In Vitro Differentiation on Graft Survival and Teratoma Formation

Anke Brederlau; Ana Sofia Correia; Sergey V. Anisimov; Muna Elmi; Gesine Paul; Laurent Roybon; Asuka Morizane; Filip Bergquist; Ilse Riebe; Ulf Nannmark; Manolo Carta; Erik Hanse; Jun Takahashi; Yoshiki Sasai; Keiko Funa; P. Brundin; Peter Eriksson; Jia-Yi Li

Human embryonic stem cells (hESCs) have been proposed as a source of dopamine (DA) neurons for transplantation in Parkinsons disease (PD). We have investigated the effect of in vitro predifferentiation on in vivo survival and differentiation of hESCs implanted into the 6‐OHDA (6‐hydroxydopamine)‐lesion rat model of PD. The hESCs were cocultured with PA6 cells for 16, 20, or 23 days, leading to the in vitro differentiation into DA neurons. Grafted hESC‐derived cells survived well and expressed neuronal markers. However, very few exhibited a DA neuron phenotype. Reversal of lesion‐induced motor deficits was not observed. Rats grafted with hESCs predifferentiated in vitro for 16 days developed severe teratomas, whereas most rats grafted with hESCs predifferentiated for 20 and 23 days remained healthy until the end of the experiment. This indicates that prolonged in vitro differentiation of hESCs is essential for preventing formation of teratomas.


Neuron | 2001

Notch1 and Notch3 Instructively Restrict bFGF-Responsive Multipotent Neural Progenitor Cells to an Astroglial Fate

Kenji Tanigaki; Fumiaki Nogaki; Jun Takahashi; Kei Tashiro; Hisanori Kurooka; Tasuku Honjo

Notch1 has been shown to induce glia in the peripheral nervous system. However, it has not been known whether Notch can direct commitment to glia from multipotent progenitors of the central nervous system. Here we present evidence that activated Notch1 and Notch3 promotes the differentiation of astroglia from the rat adult hippocampus-derived multipotent progenitors (AHPs). Quantitative clonal analysis indicates that the action of Notch is likely to be instructive. Transient activation of Notch can direct commitment of AHPs irreversibly to astroglia. Astroglial induction by Notch signaling was shown to be independent of STAT3, which is a key regulatory transcriptional factor when ciliary neurotrophic factor (CNTF) induces astroglia. These data suggest that Notch provides a CNTF-independent instructive signal of astroglia differentiation in CNS multipotent progenitor cells.


Science Translational Medicine | 2012

Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells

Naohiro Egawa; Shiho Kitaoka; Kayoko Tsukita; Motoko Naitoh; Kazutoshi Takahashi; Takuya Yamamoto; Fumihiko Adachi; Takayuki Kondo; Keisuke Okita; Isao Asaka; Takashi Aoi; Akira Watanabe; Yasuhiro Yamada; Asuka Morizane; Jun Takahashi; Takashi Ayaki; Hidefumi Ito; Katsuhiro Yoshikawa; Satoko Yamawaki; Shigehiko Suzuki; Dai Watanabe; Hiroyuki Hioki; Takeshi Kaneko; Kouki Makioka; Koichi Okamoto; Hiroshi Takuma; Akira Tamaoka; Kazuko Hasegawa; Takashi Nonaka; Masato Hasegawa

Anacardic acid attenuates mutant TDP-43–associated abnormalities in motor neurons derived from ALS patient–specific induced pluripotent stem cells. A Stepping Stone to ALS Drug Screening Amyotrophic lateral sclerosis (ALS) is an untreatable disorder in which the motor neurons degenerate, resulting in paralysis and death. Induced pluripotent stem cell (iPSC) technology makes it possible to analyze motor neurons from patients with ALS and to use them for screening new candidate drugs. In new work, Egawa et al. obtained motor neurons by inducing differentiation of iPSC lines derived from several patients with familial ALS. These patients carried disease-causing mutations in the gene encoding Tar DNA binding protein-43 (TDP-43). The ALS motor neurons in culture recapitulated cellular and molecular abnormalities associated with ALS. For example, the authors found that mutant TDP-43 in the ALS motor neurons perturbed RNA metabolism and that the motor neurons were more vulnerable to cellular stressors such as arsenite. The researchers then used the ALS motor neurons in a drug screening assay and identified a compound called anacardic acid, a histone acetyltransferase inhibitor, that could reverse some of the ALS phenotypes observed in the motor neurons. The new work provides an encouraging step toward using motor neurons generated from iPSCs derived from ALS patients to learn more about what triggers the death of motor neurons in this disease and to identify new candidate drugs that may be able to slow or reverse the devastating loss of motor neurons. Amyotrophic lateral sclerosis (ALS) is a late-onset, fatal disorder in which the motor neurons degenerate. The discovery of new drugs for treating ALS has been hampered by a lack of access to motor neurons from ALS patients and appropriate disease models. We generate motor neurons from induced pluripotent stem cells (iPSCs) from familial ALS patients, who carry mutations in Tar DNA binding protein-43 (TDP-43). ALS patient–specific iPSC–derived motor neurons formed cytosolic aggregates similar to those seen in postmortem tissue from ALS patients and exhibited shorter neurites as seen in a zebrafish model of ALS. The ALS motor neurons were characterized by increased mutant TDP-43 protein in a detergent-insoluble form bound to a spliceosomal factor SNRPB2. Expression array analyses detected small increases in the expression of genes involved in RNA metabolism and decreases in the expression of genes encoding cytoskeletal proteins. We examined four chemical compounds and found that a histone acetyltransferase inhibitor called anacardic acid rescued the abnormal ALS motor neuron phenotype. These findings suggest that motor neurons generated from ALS patient–derived iPSCs may provide a useful tool for elucidating ALS disease pathogenesis and for screening drug candidates.


Molecular and Cellular Neuroscience | 1998

Widespread Integration and Survival of Adult-Derived Neural Progenitor Cells in the Developing Optic Retina

Masayo Takahashi; Theo D. Palmer; Jun Takahashi; Fred H. Gage

Adult rat hippocampus-derived neural progenitor cells (AHPC) show considerable adaptability following grafting to several brain regions. To evaluate the plasticity of AHPCs within the optic retina, retrovirally engineered AHPCs were grafted into the vitreous cavity of the adult and newborn rat eye. Within the adult eye, AHPCs formed a uniform nondisruptive lamina in intimate contact with the inner limiting membrane. Within 4 weeks of grafting to the developing eye, the AHPCs were well integrated into the retina and adopted the morphologies and positions of Müller, amacrine, bipolar, horizontal, photoreceptor, and astroglial cells. Although the cells expressed neuronal or glial markers, none acquired end-stage markers unique to retinal neurons. This suggests that the adult-derived stem cells can adapt to a wide variety of heterologous environments and express some but not all features of retinal cells when exposed to the cues present late in retinal development.


Cell | 1996

The Signal-Dependent Coactivator CBP Is a Nuclear Target for pp90RSK

Toshihiro Nakajima; Akiyoshi Fukamizu; Jun Takahashi; Fred H. Gage; Tracy Fisher; John Blenis; Marc Montminy

We have examined the mechanism by which growth factor-mediated induction of the Ras pathway interferes with signaling via the second messenger cAMP. Activation of cellular Ras with insulin or NGF stimulated recruitment of the S6 kinase pp90RSK to the signal-dependent coactivator CBP. Formation of the pp90RSK-CBP complex occurred with high stoichiometry and persisted for 6-8 hr following growth factor addition. pp90RSK specifically recognized the E1A-binding domain of the coactivator CBP. In addition, like E1A, binding of pp90RSK to CBP was sufficient to repress transcription of cAMP-responsive genes via the cAMP-inducible factor CREB. By contrast with its effects on the cAMP pathway, formation of the pp90RSK-CBP complex was required for induction of Ras-responsive genes. These results provide a demonstration of cross-coupling between two signaling pathways that occurs at the level of a signal-dependent coactivator.

Collaboration


Dive into the Jun Takahashi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge