Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuhiko Nakabayashi is active.

Publication


Featured researches published by Kazuhiko Nakabayashi.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly

Laura A. Lettice; Taizo Horikoshi; Simon J. H. Heaney; Marijke J. van Baren; Herma C. van der Linde; Guido J. Breedveld; Marijke Joosse; Nurten Akarsu; Ben A. Oostra; Naoto Endo; Minoru Shibata; Mikio Suzuki; Ei-ichi Takahashi; Toshikatsu Shinka; Yutaka Nakahori; Dai Ayusawa; Kazuhiko Nakabayashi; Stephen W. Scherer; Peter Heutink; Robert E. Hill; Sumihare Noji

Preaxial polydactyly (PPD) is a common limb malformation in human. A number of polydactylous mouse mutants indicate that misexpression of Shh is a common requirement for generating extra digits. Here we identify a translocation breakpoint in a PPD patient and a transgenic insertion site in the polydactylous mouse mutant sasquatch (Ssq). The genetic lesions in both lie within the same respective intron of the LMBR1/Lmbr1 gene, which resides ≈1 Mb away from Shh. Genetic analysis of Ssq reveals that the Lmbr1 gene is incidental to the phenotype and that the mutation directly interrupts a cis-acting regulator of Shh. This regulator is most likely the target for generating PPD mutations in human.


PLOS Genetics | 2012

Contribution of Intragenic DNA Methylation in Mouse Gametic DNA Methylomes to Establish Oocyte-Specific Heritable Marks

Hisato Kobayashi; Takayuki Sakurai; Misaki Imai; Nozomi Takahashi; Atsushi Fukuda; Obata Yayoi; Shun Sato; Kazuhiko Nakabayashi; Kenichiro Hata; Yusuke Sotomaru; Yutaka Suzuki; Tomohiro Kono

Genome-wide dynamic changes in DNA methylation are indispensable for germline development and genomic imprinting in mammals. Here, we report single-base resolution DNA methylome and transcriptome maps of mouse germ cells, generated using whole-genome shotgun bisulfite sequencing and cDNA sequencing (mRNA-seq). Oocyte genomes showed a significant positive correlation between mRNA transcript levels and methylation of the transcribed region. Sperm genomes had nearly complete coverage of methylation, except in the CpG-rich regions, and showed a significant negative correlation between gene expression and promoter methylation. Thus, these methylome maps revealed that oocytes and sperms are widely different in the extent and distribution of DNA methylation. Furthermore, a comparison of oocyte and sperm methylomes identified more than 1,600 CpG islands differentially methylated in oocytes and sperm (germline differentially methylated regions, gDMRs), in addition to the known imprinting control regions (ICRs). About half of these differentially methylated DNA sequences appear to be at least partially resistant to the global DNA demethylation that occurs during preimplantation development. In the absence of Dnmt3L, neither methylation of most oocyte-methylated gDMRs nor intragenic methylation was observed. There was also genome-wide hypomethylation, and partial methylation at particular retrotransposons, while maintaining global gene expression, in oocytes. Along with the identification of the many Dnmt3L-dependent gDMRs at intragenic regions, the present results suggest that oocyte methylation can be divided into 2 types: Dnmt3L-dependent methylation, which is required for maternal methylation imprinting, and Dnmt3L-independent methylation, which might be essential for endogenous retroviral DNA silencing. The present data provide entirely new perspectives on the evaluation of epigenetic markers in germline cells.


Genome Research | 2014

Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment

Franck Court; Chiharu Tayama; Valeria Romanelli; Alex Martin-Trujillo; Isabel Iglesias-Platas; Kohji Okamura; Naoko Sugahara; Carlos Simón; Harry Moore; Julie V. Harness; Hans S. Keirstead; Jose V. Sanchez-Mut; Eisuke Kaneki; Pablo Lapunzina; Hidenobu Soejima; Norio Wake; Manel Esteller; Tsutomu Ogata; Kenichiro Hata; Kazuhiko Nakabayashi; David Monk

Differential methylation between the two alleles of a gene has been observed in imprinted regions, where the methylation of one allele occurs on a parent-of-origin basis, the inactive X-chromosome in females, and at those loci whose methylation is driven by genetic variants. We have extensively characterized imprinted methylation in a substantial range of normal human tissues, reciprocal genome-wide uniparental disomies, and hydatidiform moles, using a combination of whole-genome bisulfite sequencing and high-density methylation microarrays. This approach allowed us to define methylation profiles at known imprinted domains at base-pair resolution, as well as to identify 21 novel loci harboring parent-of-origin methylation, 15 of which are restricted to the placenta. We observe that the extent of imprinted differentially methylated regions (DMRs) is extremely similar between tissues, with the exception of the placenta. This extra-embryonic tissue often adopts a different methylation profile compared to somatic tissues. Further, we profiled all imprinted DMRs in sperm and embryonic stem cells derived from parthenogenetically activated oocytes, individual blastomeres, and blastocysts, in order to identify primary DMRs and reveal the extent of reprogramming during preimplantation development. Intriguingly, we find that in contrast to ubiquitous imprints, the majority of placenta-specific imprinted DMRs are unmethylated in sperm and all human embryonic stem cells. Therefore, placental-specific imprinting provides evidence for an inheritable epigenetic state that is independent of DNA methylation and the existence of a novel imprinting mechanism at these loci.


Human Molecular Genetics | 2009

Histone methylation is mechanistically linked to DNA methylation at imprinting control regions in mammals

Amandine Henckel; Kazuhiko Nakabayashi; Lionel A. Sanz; Robert Feil; Kenichiro Hata; Philippe Arnaud

Mono-allelic expression of imprinted genes from either the paternal or the maternal allele is mediated by imprinting control regions (ICRs), which are epigenetically marked in an allele-specific fashion. Although, in somatic cells, these epigenetic marks comprise both DNA methylation and histone methylation, the relationship between these two modifications in imprint acquisition and maintenance remains unclear. To address this important question, we analyzed histone modifications at ICRs in mid-gestation embryos that were obtained from Dnmt3L(-/-) females, in which DNA methylation imprints at ICRs are not established during oogenesis. The absence of maternal DNA methylation imprints in these conceptuses led to a marked decrease and loss of allele-specificity of the repressive H3K9me3, H4K20me3 and H2A/H4R3me2 histone modifications, providing the first evidence of a mechanistic link between DNA and histone methylation at ICRs. The existence of this relationship was strengthened by the observation that when DNA methylation was still present at the Snrpn and Peg3 ICRs in some of the progeny of Dnmt3L(-/-) females, these ICRs were associated with the usual patterns of histone methylation. Combined, our data establish that DNA methylation is involved in the acquisition and/or maintenance of histone methylation at ICRs.


Journal of Biological Chemistry | 2004

Post-transcriptional Regulation of Endothelial Nitric-oxide Synthase by an Overlapping Antisense mRNA Transcript

G. Brett Robb; Andrew R. Carson; Sharon C. Tai; Jason E. Fish; Sundeep Singh; Takahiro Yamada; Stephen W. Scherer; Kazuhiko Nakabayashi; Philip A. Marsden

Endothelial nitric-oxide synthase (eNOS) mRNA levels are abnormal in diseases of the cardiovascular system, but changes in gene expression cannot be accounted for by transcription alone. We found evidence for the existence of an antisense mRNA (sONE) that is derived from a transcription unit (NOS3AS) on the opposite DNA strand from which the human eNOS (NOS3) mRNA is transcribed at human chromosome 7q36. The genes are oriented in a tail-to-tail configuration, and the mRNAs encoding sONE and eNOS are complementary for 662 nucleotides. The mRNA for sONE could be detected in a variety of cell types, both in vivo and in vitro, but not vascular endothelial cells. In contrast, expression of eNOS is highly restricted to vascular endothelium. Most surprisingly, interrogation of transcriptional events across NOS3/NOS3AS genomic regions, using single- and double-stranded probes for nuclear run-off analyses and chromatin immunoprecipitation-based assessments of RNA polymerase II distribution, indicated that NOS3 and NOS3AS gene transcription did not correlate with steady-state mRNA levels. We found strong evidence supporting a role for NOS3AS in the post-transcriptional regulation of NOS3 expression. RNA interference-mediated inhibition of sONE expression in vascular smooth muscle cells increased eNOS expression. Overexpression of sONE in endothelial cells blunted eNOS expression. Finally, the histone deacetylase inhibitor trichostatin A is known to regulate the expression of eNOS via a post-transcriptional mechanism. We found that trichostatin A treatment of vascular endothelial cells increased expression of sONE mRNA levels prior to the observed decrease in eNOS mRNA expression. Taken together, these results indicate that an antisense mRNA (sONE) participates in the post-transcriptional regulation of eNOS and provide a newer model for endothelial cell-specific gene expression.


Nature Biotechnology | 2016

Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions

Sumiyo Morita; Hirofumi Noguchi; Takuro Horii; Kazuhiko Nakabayashi; Mika Kimura; Kohji Okamura; Atsuhiko Sakai; Hideyuki Nakashima; Kenichiro Hata; Kinichi Nakashima; Izuho Hatada

Despite the importance of DNA methylation in health and disease, technologies to readily manipulate methylation of specific sequences for functional analysis and therapeutic purposes are lacking. Here we adapt the previously described dCas9–SunTag for efficient, targeted demethylation of specific DNA loci. The original SunTag consists of ten copies of the GCN4 peptide separated by 5-amino-acid linkers. To achieve efficient recruitment of an anti-GCN4 scFv fused to the ten-eleven (TET) 1 hydroxylase, which induces demethylation, we changed the linker length to 22 amino acids. The system attains demethylation efficiencies >50% in seven out of nine loci tested. Four of these seven loci showed demethylation of >90%. We demonstrate targeted demethylation of CpGs in regulatory regions and demethylation-dependent 1.7- to 50-fold upregulation of associated genes both in cell culture (embryonic stem cells, cancer cell lines, primary neural precursor cells) and in vivo in mouse fetuses.


Journal of Human Genetics | 2016

Human genetic variation database, a reference database of genetic variations in the Japanese population

Koichiro Higasa; Noriko Miyake; Jun Yoshimura; Kohji Okamura; Tetsuya Niihori; Hirotomo Saitsu; Koichiro Doi; Masakazu Shimizu; Kazuhiko Nakabayashi; Yoko Aoki; Yoshinori Tsurusaki; Shinichi Morishita; Takahisa Kawaguchi; Osuke Migita; Keiko Nakayama; Mitsuko Nakashima; Jun Mitsui; Maiko Narahara; Keiko Hayashi; Ryo Funayama; Daisuke Yamaguchi; Hiroyuki Ishiura; Wen Ya Ko; Kenichiro Hata; Takeshi Nagashima; Ryo Yamada; Yoichi Matsubara; Akihiro Umezawa; Shoji Tsuji; Naomichi Matsumoto

Whole-genome and -exome resequencing using next-generation sequencers is a powerful approach for identifying genomic variations that are associated with diseases. However, systematic strategies for prioritizing causative variants from many candidates to explain the disease phenotype are still far from being established, because the population-specific frequency spectrum of genetic variation has not been characterized. Here, we have collected exomic genetic variation from 1208 Japanese individuals through a collaborative effort, and aggregated the data into a prevailing catalog. In total, we identified 156 622 previously unreported variants. The allele frequencies for the majority (88.8%) were lower than 0.5% in allele frequency and predicted to be functionally deleterious. In addition, we have constructed a Japanese-specific major allele reference genome by which the number of unique mapping of the short reads in our data has increased 0.045% on average. Our results illustrate the importance of constructing an ethnicity-specific reference genome for identifying rare variants. All the collected data were centralized to a newly developed database to serve as useful resources for exploring pathogenic variations. Public access to the database is available at http://www.genome.med.kyoto-u.ac.jp/SnpDB/.


PLOS Genetics | 2005

Identification of the imprinted KLF14 transcription factor undergoing human-specific accelerated evolution.

Layla Parker-Katiraee; Andrew R. Carson; Takahiro Yamada; Philippe Arnaud; Robert Feil; Sayeda Abu-Amero; Gudrun E. Moore; Masahiro Kaneda; George H. Perry; Anne C. Stone; Charles Lee; Makiko Meguro-Horike; Hiroyuki Sasaki; Keiko Kobayashi; Kazuhiko Nakabayashi; Stephen W. Scherer

Imprinted genes are expressed in a parent-of-origin manner and are located in clusters throughout the genome. Aberrations in the expression of imprinted genes on human Chromosome 7 have been suggested to play a role in the etiologies of Russell-Silver Syndrome and autism. We describe the imprinting of KLF14, an intronless member of the Krüppel-like family of transcription factors located at Chromosome 7q32. We show that it has monoallelic maternal expression in all embryonic and extra-embryonic tissues studied, in both human and mouse. We examine epigenetic modifications in the KLF14 CpG island in both species and find this region to be hypomethylated. In addition, we perform chromatin immunoprecipitation and find that the murine Klf14 CpG island lacks allele-specific histone modifications. Despite the absence of these defining features, our analysis of Klf14 in offspring from DNA methyltransferase 3a conditional knockout mice reveals that the genes expression is dependent upon a maternally methylated region. Due to the intronless nature of Klf14 and its homology to Klf16, we suggest that the gene is an ancient retrotransposed copy of Klf16. By sequence analysis of numerous species, we place the timing of this event after the divergence of Marsupialia, yet prior to the divergence of the Xenarthra superclade. We identify a large number of sequence variants in KLF14 and, using several measures of diversity, we determine that there is greater variability in the human lineage with a significantly increased number of nonsynonymous changes, suggesting human-specific accelerated evolution. Thus, KLF14 may be the first example of an imprinted transcript undergoing accelerated evolution in the human lineage.


Nature Communications | 2014

Offspring production with sperm grown in vitro from cryopreserved testis tissues

Tetsuhiro Yokonishi; Takuya Sato; Mitsuru Komeya; Kumiko Katagiri; Yoshinobu Kubota; Kazuhiko Nakabayashi; Kenichiro Hata; Kimiko Inoue; Narumi Ogonuki; Atsuo Ogura; Takehiko Ogawa

With the increasing cure rate of paediatric cancers, infertility, as one of the adverse effects of treatments, has become an important concern for patients and their families. Since semen cryopreservation is applicable only for post-pubertal patients, alternative pre-pubertal measures are necessary. Here we demonstrate that testis tissue cryopreservation is a realistic measure for preserving the fertility of an individual. Testis tissues of neonatal mice were cryopreserved either by slow freezing or by vitrification. After thawing, they were cultured on agarose gel and showed spermatogenesis up to sperm formation. Microinsemination was performed with round spermatids and sperm, leading to eight offspring in total. They grew healthily and produced progeny upon natural mating between them. This strategy, the cryopreservation of testis tissues followed by in vitro spermatogenesis, is promising to preserve the fertility of male paediatric cancer patients in the future.


Journal of Human Genetics | 2009

Identification of novel candidate loci for anorexia nervosa at 1q41 and 11q22 in Japanese by a genome-wide association analysis with microsatellite markers

Kazuhiko Nakabayashi; Gen Komaki; Atsushi Tajima; Tetsuya Ando; Mayuko Ishikawa; Junko Nomoto; Kenichiro Hata; Akira Oka; Hidetoshi Inoko; Takehiko Sasazuki; Senji Shirasawa

The Japanese Genetic Research Group for Eating Disorders (JGRED) is a multisite collaborative study group that was organized for the systematic recruitment of patients with an eating disorder for the purpose of genetic study in Japan. We conducted a genome-wide case–control association study using 23 465 highly polymorphic microsatellite (MS) markers to identify genomic loci related to anorexia nervosa (AN). Pooled DNA typing in two screening stages, followed by individual typing of 320 AN cases and 341 controls, allowed us to identify 10 MS markers to be associated with AN. To narrow down genomic regions responsible for the association of these MS markers, we further conducted a single-nucleotide polymorphism (SNP) association analysis for 7 of the 10 loci in 331 AN cases and 872 controls, which include the 320 AN cases and the 341 controls genotyped in the MS screening, respectively. Two loci, namely 1q41 and 11q22, remained significantly associated with AN in the SNP-based fine mapping, indicating the success in narrowing down susceptibility regions for AN. Neither of these loci showed a positive evidence of association with bulimia nervosa. The most significant association was observed at SNP rs2048332 (allelic P-value=0.00023) located at 3′-downstream of the SPATA17 gene on the 1q41 locus. The association analysis for MS-SNP haplotypes detected a statistically significant association (permutation P-value=0.00003) of the A-4-G-T haplotype that comprised four SNP/MS markers (rs6590474–D11S0268i–rs737582–rs7947224) on the 11q22 locus with AN. This linkage disequilibrium block spanning a 20.2-kb interval contains exon 9 of the CNTN5 gene encoding contactin 5.

Collaboration


Dive into the Kazuhiko Nakabayashi's collaboration.

Top Co-Authors

Avatar

Kenichiro Hata

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen W. Scherer

The Centre for Applied Genomics

View shared research outputs
Top Co-Authors

Avatar

Keiko Matsubara

Dokkyo Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wataru Yoshida

Tokyo University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge