Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lin Zhang is active.

Publication


Featured researches published by Lin Zhang.


Nature Medicine | 2004

Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival

Tyler J. Curiel; George Coukos; Linhua Zou; Xavier Alvarez; Pui Cheng; Peter Mottram; Melina Evdemon-Hogan; Jose R. Conejo-Garcia; Lin Zhang; Matthew E. Burow; Yun Zhu; Shuang Wei; Ilona Kryczek; Ben Daniel; Alan N. Gordon; Leann Myers; Andrew A. Lackner; Mary L. Disis; Keith L. Knutson; Lieping Chen; Weiping Zou

Regulatory T (Treg) cells mediate homeostatic peripheral tolerance by suppressing autoreactive T cells. Failure of host antitumor immunity may be caused by exaggerated suppression of tumor-associated antigen–reactive lymphocytes mediated by Treg cells; however, definitive evidence that Treg cells have an immunopathological role in human cancer is lacking. Here we show, in detailed studies of CD4+CD25+FOXP3+ Treg cells in 104 individuals affected with ovarian carcinoma, that human tumor Treg cells suppress tumor-specific T cell immunity and contribute to growth of human tumors in vivo. We also show that tumor Treg cells are associated with a high death hazard and reduced survival. Human Treg cells preferentially move to and accumulate in tumors and ascites, but rarely enter draining lymph nodes in later cancer stages. Tumor cells and microenvironmental macrophages produce the chemokine CCL22, which mediates trafficking of Treg cells to the tumor. This specific recruitment of Treg cells represents a mechanism by which tumors may foster immune privilege. Thus, blocking Treg cell migration or function may help to defeat human cancer.


Nature Cell Biology | 2008

The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis

Qihong Huang; Kiranmai Gumireddy; Schrier M; le Sage C; Nagel R; Nair S; Egan Da; Anping Li; Huang G; Andres J. Klein-Szanto; Phyllis A. Gimotty; Dionyssios Katsaros; George Coukos; Lin Zhang; Puré E; Reuven Agami

MicroRNAs (miRNAs) are single-stranded, noncoding RNAs that are important in many biological processes. Although the oncogenic and tumour-suppressive functions of several miRNAs have been characterized, the role of miRNAs in mediating tumour metastasis was addressed only recently and still remains largely unexplored. To identify potential metastasis-promoting miRNAs, we set up a genetic screen using a non-metastatic, human breast tumour cell line that was transduced with a miRNA-expression library and subjected to a trans-well migration assay. We found that human miR-373 and miR-520c stimulated cancer cell migration and invasion in vitro and in vivo, and that certain cancer cell lines depend on endogenous miR-373 activity to migrate efficiently. Mechanistically, the migration phenotype of miR-373 and miR-520c can be explained by suppression of CD44. We found significant upregulation of miR-373 in clinical breast cancer metastasis samples that correlated inversely with CD44 expression. Taken together, our findings indicate that miRNAs are involved in tumour migration and invasion, and implicate miR-373 and miR-520c as metastasis-promoting miRNAs.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer

Lin Zhang; Stefano Volinia; Tomas Bonome; George A. Calin; Joel Greshock; Nuo Yang; Chang Gong Liu; Antonis Giannakakis; Pangiotis Alexiou; Kosei Hasegawa; Cameron N. Johnstone; Molly Megraw; Sarah Adams; Heini Lassus; Jia Huang; Sippy Kaur; Shun Liang; Praveen Sethupathy; Arto Leminen; Victor A. Simossis; Raphael Sandaltzopoulos; Yoshio Naomoto; Dionyssios Katsaros; Phyllis A. Gimotty; Angela DeMichele; Qihong Huang; Ralf Bützow; Anil K. Rustgi; Barbara L. Weber; Michael J. Birrer

MicroRNAs (miRNAs) are an abundant class of small noncoding RNAs that function as negative gene regulators. miRNA deregulation is involved in the initiation and progression of human cancer; however, the underlying mechanism and its contributions to genome-wide transcriptional changes in cancer are still largely unknown. We studied miRNA deregulation in human epithelial ovarian cancer by integrative genomic approach, including miRNA microarray (n = 106), array-based comparative genomic hybridization (n = 109), cDNA microarray (n = 76), and tissue array (n = 504). miRNA expression is markedly down-regulated in malignant transformation and tumor progression. Genomic copy number loss and epigenetic silencing, respectively, may account for the down-regulation of ≈15% and at least ≈36% of miRNAs in advanced ovarian tumors and miRNA down-regulation contributes to a genome-wide transcriptional deregulation. Last, eight miRNAs located in the chromosome 14 miRNA cluster (Dlk1-Gtl2 domain) were identified as potential tumor suppressor genes. Therefore, our results suggest that miRNAs may offer new biomarkers and therapeutic targets in epithelial ovarian cancer.


Nature | 2011

Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T reg cells

Andrea Facciabene; Xiaohui Peng; Ian S. Hagemann; Klara Balint; Andrea Barchetti; Li-Ping Wang; Phyllis A. Gimotty; C. Blake Gilks; Priti Lal; Lin Zhang; George Coukos

Although immune mechanisms can suppress tumour growth, tumours establish potent, overlapping mechanisms that mediate immune evasion. Emerging evidence suggests a link between angiogenesis and the tolerance of tumours to immune mechanisms. Hypoxia, a condition that is known to drive angiogenesis in tumours, results in the release of damage-associated pattern molecules, which can trigger the rejection of tumours by the immune system. Thus, the counter-activation of tolerance mechanisms at the site of tumour hypoxia would be a crucial condition for maintaining the immunological escape of tumours. However, a direct link between tumour hypoxia and tolerance through the recruitment of regulatory cells has not been established. We proposed that tumour hypoxia induces the expression of chemotactic factors that promote tolerance. Here we show that tumour hypoxia promotes the recruitment of regulatory T (Treg) cells through induction of expression of the chemokine CC-chemokine ligand 28 (CCL28), which, in turn, promotes tumour tolerance and angiogenesis. Thus, peripheral immune tolerance and angiogenesis programs are closely connected and cooperate to sustain tumour growth.


Nature Medicine | 2004

Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A.

Jose R. Conejo-Garcia; Fabian Benencia; Maria C. Courreges; Eugene Kang; Alisha Mohamed-Hadley; Ronald J. Buckanovich; David O. Holtz; Ann Jenkins; Hana Na; Lin Zhang; Daniel S. Wagner; Dionyssios Katsaros; Richard Caroll; George Coukos

The involvement of immune mechanisms in tumor angiogenesis is unclear. Here we describe a new mechanism of tumor vasculogenesis mediated by dendritic cell (DC) precursors through the cooperation of β-defensins and vascular endothelial growth factor-A (Vegf-A). Expression of mouse β-defensin-29 recruited DC precursors to tumors and enhanced tumor vascularization and growth in the presence of increased Vegf-A expression. A new leukocyte population expressing DC and endothelial markers was uncovered in mouse and human ovarian carcinomas coexpressing Vegf-A and β-defensins. Tumor-infiltrating DCs migrated to tumor vessels and independently assembled neovasculature in vivo. Bone marrow–derived DCs underwent endothelial-like differentiation ex vivo, migrated to blood vessels and promoted the growth of tumors expressing high levels of Vegf-A. We show that β-defensins and Vegf-A cooperate to promote tumor vasculogenesis by carrying out distinct tasks: β-defensins chemoattract DC precursors through CCR6, whereas Vegf-A primarily induces their endothelial-like specialization and migration to vessels, which is mediated by Vegf receptor-2.


Cancer Research | 2008

MicroRNA Microarray Identifies Let-7i as a Novel Biomarker and Therapeutic Target in Human Epithelial Ovarian Cancer

Nuo Yang; Sippy Kaur; Stefano Volinia; Joel Greshock; Heini Lassus; Kosei Hasegawa; Shun Liang; Arto Leminen; Shan Deng; Lori Smith; Cameron N. Johnstone; Xian Ming Chen; Chang Gong Liu; Qihong Huang; Dionyssios Katsaros; George A. Calin; Barbara L. Weber; Ralf Bützow; Carlo M. Croce; George Coukos; Lin Zhang

MicroRNAs (miRNA) are approximately 22-nucleotide noncoding RNAs that negatively regulate protein-coding gene expression in a sequence-specific manner via translational inhibition or mRNA degradation. Our recent studies showed that miRNAs exhibit genomic alterations at a high frequency and their expression is remarkably deregulated in ovarian cancer, strongly suggesting that miRNAs are involved in the initiation and progression of this disease. In the present study, we performed miRNA microarray to identify the miRNAs associated with chemotherapy response in ovarian cancer and found that let-7i expression was significantly reduced in chemotherapy-resistant patients (n = 69, P = 0.003). This result was further validated by stem-loop real-time reverse transcription-PCR (n = 62, P = 0.015). Both loss-of-function (by synthetic let-7i inhibitor) and gain-of-function (by retroviral overexpression of let-7i) studies showed that reduced let-7i expression significantly increased the resistance of ovarian and breast cancer cells to the chemotherapy drug, cis-platinum. Finally, using miRNA microarray, we found that decreased let-7i expression was significantly associated with the shorter progression-free survival of patients with late-stage ovarian cancer (n = 72, P = 0.042). This finding was further validated in the same sample set by stem-loop real-time reverse transcription-PCR (n = 62, P = 0.001) and in an independent sample set by in situ hybridization (n = 53, P = 0.049). Taken together, our results strongly suggest that let-7i might be used as a therapeutic target to modulate platinum-based chemotherapy and as a biomarker to predict chemotherapy response and survival in patients with ovarian cancer.


Cancer Biology & Therapy | 2008

miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer.

Antonis Giannakakis; Raphael Sandaltzopoulos; Joel Greshock; Shun Liang; Jia Huang; Kosei Hasegawa; Chunsheng Li; Ann O'Brien-Jenkins; Dionyssios Katsaros; Barbara L. Weber; Celeste Simon; George Coukos; Lin Zhang

Tumor growth results in hypoxia. Understanding the mechanisms of gene expression reprogramming under hypoxia may provide important clues to cancer pathogenesis. We studied miRNA genes that are regulated by hypoxia in ovarian cancer cell lines by TaqMan miRNA assay containing 157 mature miRNAs. MiR-210 was the most prominent miRNA consistently stimulated under hypoxic conditions. We provide evidence for the involvement of the HIF signaling pathway in miR-210 regulation. Biocomputational analysis and in vitro assays demonstrated that e2f transcription factor 3 (e2f3), a key protein in cell cycle, is regulated by miR-210. E2F3 was further confirmed to be downregulated at the protein level upon induction of miR-210. Importantly, we found remarkably high frequency of miR-210 gene copy deletions in ovarian cancer patients (64%, n=114) and that gene copy number correlates with miR-210 expression levels. Taken together, our results indicate that miR-210 plays a crucial role in tumor onset as a key regulator of the hypoxia response and provide evidence for a link between hypoxia and the regulation of cell cycle.


Cell Cycle | 2008

Mechanisms of microRNA deregulation in human cancer

Shan Deng; George A. Calin; Carlo M. Croce; George Coukos; Lin Zhang

microRNAs (miRNAs) are an abundant class of small non-coding RNAs that function as gene regulators. Although deregulation of miRNA expression is involved in the initiation and progression of tumorigenesis, the underlying mechanisms of miRNA deregulation in human cancer are still largely unknown. Increasing evidence indicates that transcriptional deregulations, epigenetic alterations, mutations, DNA copy number abnormalities and defects in the miRNA biogenesis machinery might contribute to miRNA deregulation in human cancer. A clearer understanding of the mechanisms involved in miRNA deregulation in human cancer will contribute greatly to the development of new miRNA-based strategies in cancer diagnosis and treatment.


Cancer Cell | 2015

Comprehensive Genomic Characterization of Long Non-coding RNAs across Human Cancers

Xiaohui Yan; Zhongyi Hu; Yi Feng; Xiaowen Hu; Jiao Yuan; Sihai Dave Zhao; Youyou Zhang; Lu Yang; Weiwei Shan; Qun He; Lingling Fan; Lana E. Kandalaft; Janos L. Tanyi; Chunsheng Li; Chao Xing Yuan; Dongmei Zhang; Huiqing Yuan; Keqin Hua; Yiling Lu; Dionyssios Katsaros; Qihong Huang; Kathleen T. Montone; Yi Fan; George Coukos; Jeff Boyd; Anil K. Sood; Timothy R. Rebbeck; Gordon B. Mills; Chi V. Dang; Lin Zhang

The discovery of long non-coding RNA (lncRNA) has dramatically altered our understanding of cancer. Here, we describe a comprehensive analysis of lncRNA alterations at transcriptional, genomic, and epigenetic levels in 5,037 human tumor specimens across 13 cancer types from The Cancer Genome Atlas. Our results suggest that the expression and dysregulation of lncRNAs are highly cancer type specific compared with protein-coding genes. Using the integrative data generated by this analysis, we present a clinically guided small interfering RNA screening strategy and a co-expression analysis approach to identify cancer driver lncRNAs and predict their functions. This provides a resource for investigating lncRNAs in cancer and lays the groundwork for the development of new diagnostics and treatments.


Cancer Cell | 2014

A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer.

Xiaowen Hu; Yi Feng; Dongmei Zhang; Sihai Dave Zhao; Zhongyi Hu; Joel Greshock; Youyou Zhang; Lu Yang; Xiaomin Zhong; Li-Ping Wang; Stephanie Jean; Chunsheng Li; Qihong Huang; Dionyssios Katsaros; Kathleen T. Montone; Janos L. Tanyi; Yiling Lu; Jeff Boyd; Katherine L. Nathanson; Hongzhe Li; Gordon B. Mills; Lin Zhang

In a genome-wide survey on somatic copy-number alterations (SCNAs) of long noncoding RNA (lncRNA) in 2,394 tumor specimens from 12 cancer types, we found that about 21.8% of lncRNA genes were located in regions with focal SCNAs. By integrating bioinformatics analyses of lncRNA SCNAs and expression with functional screening assays, we identified an oncogene, focally amplified lncRNA on chromosome 1 (FAL1), whose copy number and expression are correlated with outcomes in ovarian cancer. FAL1 associates with the epigenetic repressor BMI1 and regulates its stability in order to modulate the transcription of a number of genes including CDKN1A. The oncogenic activity of FAL1 is partially attributable to its repression of p21. FAL1-specific siRNAs significantly inhibit tumor growth in vivo.

Collaboration


Dive into the Lin Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nuo Yang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Shun Liang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Chunsheng Li

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaowen Hu

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janos L. Tanyi

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge