Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lu Qi is active.

Publication


Featured researches published by Lu Qi.


Nature Genetics | 2008

Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes

Eleftheria Zeggini; Laura J. Scott; Richa Saxena; Benjamin F. Voight; Jonathan Marchini; Tianle Hu; Paul I. W. de Bakker; Gonçalo R. Abecasis; Peter Almgren; Gitte Andersen; Kristin Ardlie; Kristina Bengtsson Boström; Richard N. Bergman; Lori L. Bonnycastle; Knut Borch-Johnsen; Noël P. Burtt; Hong Chen; Peter S. Chines; Mark J. Daly; Parimal Deodhar; Chia-Jen Ding; Alex S. F. Doney; William L. Duren; Katherine S. Elliott; Michael R. Erdos; Timothy M. Frayling; Rachel M. Freathy; Lauren Gianniny; Harald Grallert; Niels Grarup

Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D). Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to identify variants with modest effects, we carried out meta-analysis of three T2D GWA scans comprising 10,128 individuals of European descent and ∼2.2 million SNPs (directly genotyped and imputed), followed by replication testing in an independent sample with an effective sample size of up to 53,975. We detected at least six previously unknown loci with robust evidence for association, including the JAZF1 (P = 5.0 × 10−14), CDC123-CAMK1D (P = 1.2 × 10−10), TSPAN8-LGR5 (P = 1.1 × 10−9), THADA (P = 1.1 × 10−9), ADAMTS9 (P = 1.2 × 10−8) and NOTCH2 (P = 4.1 × 10−8) gene regions. Our results illustrate the value of large discovery and follow-up samples for gaining further insights into the inherited basis of T2D.


The Lancet | 2012

Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies.

Nadeem Sarwar; Adam S. Butterworth; Daniel F. Freitag; John Gregson; Peter Willeit; Donal N. Gorman; Pei Gao; Danish Saleheen; Augusto Rendon; Christopher P. Nelson; Peter S. Braund; Alistair S. Hall; Daniel I. Chasman; Anne Tybjærg-Hansen; John Chambers; Emelia J. Benjamin; Paul W. Franks; Robert Clarke; Arthur A. M. Wilde; Mieke D. Trip; Maristella Steri; Jacqueline C. M. Witteman; Lu Qi; C. Ellen van der Schoot; Ulf de Faire; Jeanette Erdmann; H. M. Stringham; Wolfgang Koenig; Daniel J. Rader; David Melzer

Summary Background Persistent inflammation has been proposed to contribute to various stages in the pathogenesis of cardiovascular disease. Interleukin-6 receptor (IL6R) signalling propagates downstream inflammation cascades. To assess whether this pathway is causally relevant to coronary heart disease, we studied a functional genetic variant known to affect IL6R signalling. Methods In a collaborative meta-analysis, we studied Asp358Ala (rs2228145) in IL6R in relation to a panel of conventional risk factors and inflammation biomarkers in 125 222 participants. We also compared the frequency of Asp358Ala in 51 441 patients with coronary heart disease and in 136 226 controls. To gain insight into possible mechanisms, we assessed Asp358Ala in relation to localised gene expression and to postlipopolysaccharide stimulation of interleukin 6. Findings The minor allele frequency of Asp358Ala was 39%. Asp358Ala was not associated with lipid concentrations, blood pressure, adiposity, dysglycaemia, or smoking (p value for association per minor allele ≥0·04 for each). By contrast, for every copy of 358Ala inherited, mean concentration of IL6R increased by 34·3% (95% CI 30·4–38·2) and of interleukin 6 by 14·6% (10·7–18·4), and mean concentration of C-reactive protein was reduced by 7·5% (5·9–9·1) and of fibrinogen by 1·0% (0·7–1·3). For every copy of 358Ala inherited, risk of coronary heart disease was reduced by 3·4% (1·8–5·0). Asp358Ala was not related to IL6R mRNA levels or interleukin-6 production in monocytes. Interpretation Large-scale human genetic and biomarker data are consistent with a causal association between IL6R-related pathways and coronary heart disease. Funding British Heart Foundation; UK Medical Research Council; UK National Institute of Health Research, Cambridge Biomedical Research Centre; BUPA Foundation.


Nature Genetics | 2012

Meta-analysis identifies common variants associated with body mass index in east Asians.

Wanqing Wen; Yoon Shin Cho; Wei Zheng; Rajkumar Dorajoo; Norihiro Kato; Lu Qi; Chien-Hsiun Chen; Ryan J. Delahanty; Yukinori Okada; Yasuharu Tabara; Dongfeng Gu; Dingliang Zhu; Christopher A. Haiman; Zengnan Mo; Yu-Tang Gao; Seang-Mei Saw; Min Jin Go; Fumihiko Takeuchi; Li-Ching Chang; Yoshihiro Kokubo; Jun Liang; Mei Hao; Loic Le Marchand; Yi Zhang; Yanling Hu; Tien Yin Wong; Jirong Long; Bok-Ghee Han; Michiaki Kubo; Ken Yamamoto

Multiple genetic loci associated with obesity or body mass index (BMI) have been identified through genome-wide association studies conducted predominantly in populations of European ancestry. We performed a meta-analysis of associations between BMI and approximately 2.4 million SNPs in 27,715 east Asians, which was followed by in silico and de novo replication studies in 37,691 and 17,642 additional east Asians, respectively. We identified ten BMI-associated loci at genome-wide significance (P < 5.0 × 10−8), including seven previously identified loci (FTO, SEC16B, MC4R, GIPR-QPCTL, ADCY3-DNAJC27, BDNF and MAP2K5) and three novel loci in or near the CDKAL1, PCSK1 and GP2 genes. Three additional loci nearly reached the genome-wide significance threshold, including two previously identified loci in the GNPDA2 and TFAP2B genes and a newly identified signal near PAX6, all of which were associated with BMI with P < 5.0 × 10−7. Findings from this study may shed light on new pathways involved in obesity and demonstrate the value of conducting genetic studies in non-European populations.


Diabetes | 2010

Exposure to the Chinese Famine in Early Life and the Risk of Hyperglycemia and Type 2 Diabetes in Adulthood

Yanping Li; Yuna He; Lu Qi; Vincent W. V. Jaddoe; Edith J. M. Feskens; Yang X; Guansheng Ma; Frank B. Hu

OBJECTIVE Early developmental adaptations in response to undernutrition may play an essential role in susceptibility to type 2 diabetes, particularly for those experiencing a “mismatched rich nutritional environment” in later life. We examined the associations of exposure to the Chinese famine (1959–1961) during fetal life and childhood with the risk of hyperglycemia and type 2 diabetes in adulthood. RESEARCH DESIGN AND METHODS We used the data for 7,874 rural adults born between 1954 and 1964 in selected communities from the cross-sectional 2002 China National Nutrition and Health Survey. Hyperglycemia was defined as fasting plasma glucose ≥6.1 mmol/l and/or 2-h plasma glucose ≥7.8 mmol/l and/or a previous clinical diagnosis of type 2 diabetes. RESULTS Prevalences of hyperglycemia among adults in nonexposed, fetal exposed, early-childhood, mid-childhood, and late-childhood exposed cohorts were 2.4%, 5.7%, 3.9%, 3.4%, and 5.9%, respectively. In severely affected famine areas, fetal-exposed subjects had an increased risk of hyperglycemia compared with nonexposed subjects (odds ratio = 3.92; 95% CI: 1.64–9.39; P = 0.002); this difference was not observed in less severely affected famine areas (odds ratio = 0.57; 95% CI: 0.25–1.31; P = 0.185). The odds ratios were significantly different between groups from the severe and less severe famine areas (P for interaction = 0.001). In severely affected famine areas, fetal-exposed subjects who followed an affluent/Western dietary pattern (odds ratios = 7.63; 95% CI: 2.41–24.1; P = 0.0005) or who had a higher economic status in later life experienced a substantially elevated risk of hyperglycemia (odds ratios = 6.20; 95% CI: 2.08–18.5; P = 0.001). CONCLUSIONS Fetal exposure to the severe Chinese famine increases the risk of hyperglycemia in adulthood. This association appears to be exacerbated by a nutritionally rich environment in later life.


The American Journal of Clinical Nutrition | 2013

Consumption of cereal fiber, mixtures of whole grains and bran, and whole grains and risk reduction in type 2 diabetes, obesity, and cardiovascular disease

Susan S Cho; Lu Qi; George C. Fahey; David M. Klurfeld

BACKGROUND Studies of whole grain and chronic disease have often included bran-enriched foods and other ingredients that do not meet the current definition of whole grains. Therefore, we assessed the literature to test whether whole grains alone had benefits on these diseases. OBJECTIVE The objective was to assess the contribution of bran or cereal fiber on the impact of whole grains on the risk of type 2 diabetes (T2D), obesity and body weight measures, and cardiovascular disease (CVD) in human studies as the basis for establishing an American Society for Nutrition (ASN) position on this subject. DESIGN We performed a comprehensive PubMed search of human studies published from 1965 to December 2010. RESULTS Most whole-grain studies included mixtures of whole grains and foods with ≥25% bran. Prospective studies consistently showed a reduced risk of T2D with high intakes of cereal fiber or mixtures of whole grains and bran. For body weight, a limited number of prospective studies on cereal fiber and whole grains reported small but significant reductions in weight gain. For CVD, studies found reduced risk with high intakes of cereal fiber or mixtures of whole grains and bran. CONCLUSIONS The ASN position, based on the current state of the science, is that consumption of foods rich in cereal fiber or mixtures of whole grains and bran is modestly associated with a reduced risk of obesity, T2D, and CVD. The data for whole grains alone are limited primarily because of varying definitions among epidemiologic studies of what, and how much, was included in that food category.


Diabetes | 2006

Variant of Transcription Factor 7-Like 2 (TCF7L2) Gene and the Risk of Type 2 Diabetes in Large Cohorts of U.S. Women and Men

Cuilin Zhang; Lu Qi; David J. Hunter; James B. Meigs; JoAnn E. Manson; Rob M. van Dam; Frank B. Hu

Emerging evidence indicates that variation in the transcription factor 7-like 2 (TCF7L2) gene may play a role in the pathogenesis of type 2 diabetes. In a prospective, nested, case-control study (n = 3,520) within the Nurses’ Health Study (687 type 2 diabetic case and 1,051 control subjects) and the Health Professionals Follow-up Study (886 case and 896 control subjects), we examined the association of a common variant of the TCF7L2 gene (rs12255372 [T/G]) with type 2 diabetes risk among Caucasians. Frequencies of the T-allele were significantly higher among case than control subjects; each copy of the T-allele was associated with a 1.32-fold (P = 0.0002) and 1.53-fold (P < 0.0001) increased type 2 diabetes risk in women and men, respectively. The odds ratios (95% CI) associated with homozygous carriers of the T-allele were 1.86 (1.30–2.67) and 2.15 (1.48–3.13) in women and men, respectively. Population-attributable risks for diabetes associated with the T-allele were 14.8 and 22.3% for women and men, respectively. In a meta-analysis of 3,347 case and 3,947 control sujects, each copy of the T-allele was associated with a 1.48-fold increased risk (P < 10−16). Our findings confirm that the TCF7L2 gene represents an important locus for predicting inherited susceptibility to type 2 diabetes.


Nutrition Reviews | 2008

Gene-environment interaction and obesity

Lu Qi; Young Ae Cho

The epidemic of obesity has become a major public health problem. Common-form obesity is underpinned by both environmental and genetic factors. Epidemiological studies have documented that increased intakes of energy and reduced consumption of high-fiber foods, as well as sedentary lifestyle, were among the major driving forces for the epidemic of obesity. Recent genome-wide association studies have identified several genes convincingly related to obesity risk, including the fat mass and obesity associated gene and the melanocortin-4 receptor gene. Testing gene-environment interaction is a relatively new field. This article reviews recent advances in identifying the genetic and environmental risk factors (lifestyle and diet) for obesity. The evidence for gene-environment interaction, especially from observational studies and randomized intervention trials, is examined specifically. Knowledge about the interplay between genetic and environmental components may facilitate the choice of more effective and specific measures for obesity prevention based on the personalized genetic make-up.


PLOS Genetics | 2012

Stratifying Type 2 Diabetes Cases by BMI Identifies Genetic Risk Variants in LAMA1 and Enrichment for Risk Variants in Lean Compared to Obese Cases

John Perry; Benjamin F. Voight; Loı̈c Yengo; Najaf Amin; Josée Dupuis; Martha Ganser; Harald Grallert; Pau Navarro; Man Li; Lu Qi; Valgerdur Steinthorsdottir; Robert A. Scott; Peter Almgren; Dan E. Arking; Yurii S. Aulchenko; Beverley Balkau; Rafn Benediktsson; Richard N. Bergman; Eric Boerwinkle; Lori L. Bonnycastle; Noël P. Burtt; Harry Campbell; Guillaume Charpentier; Francis S. Collins; Christian Gieger; Todd Green; Samy Hadjadj; Andrew T. Hattersley; Christian Herder; Albert Hofman

Common diseases such as type 2 diabetes are phenotypically heterogeneous. Obesity is a major risk factor for type 2 diabetes, but patients vary appreciably in body mass index. We hypothesized that the genetic predisposition to the disease may be different in lean (BMI<25 Kg/m2) compared to obese cases (BMI≥30 Kg/m2). We performed two case-control genome-wide studies using two accepted cut-offs for defining individuals as overweight or obese. We used 2,112 lean type 2 diabetes cases (BMI<25 kg/m2) or 4,123 obese cases (BMI≥30 kg/m2), and 54,412 un-stratified controls. Replication was performed in 2,881 lean cases or 8,702 obese cases, and 18,957 un-stratified controls. To assess the effects of known signals, we tested the individual and combined effects of SNPs representing 36 type 2 diabetes loci. After combining data from discovery and replication datasets, we identified two signals not previously reported in Europeans. A variant (rs8090011) in the LAMA1 gene was associated with type 2 diabetes in lean cases (P = 8.4×10−9, OR = 1.13 [95% CI 1.09–1.18]), and this association was stronger than that in obese cases (P = 0.04, OR = 1.03 [95% CI 1.00–1.06]). A variant in HMG20A—previously identified in South Asians but not Europeans—was associated with type 2 diabetes in obese cases (P = 1.3×10−8, OR = 1.11 [95% CI 1.07–1.15]), although this association was not significantly stronger than that in lean cases (P = 0.02, OR = 1.09 [95% CI 1.02–1.17]). For 36 known type 2 diabetes loci, 29 had a larger odds ratio in the lean compared to obese (binomial P = 0.0002). In the lean analysis, we observed a weighted per-risk allele OR = 1.13 [95% CI 1.10–1.17], P = 3.2×10−14. This was larger than the same model fitted in the obese analysis where the OR = 1.06 [95% CI 1.05–1.08], P = 2.2×10−16. This study provides evidence that stratification of type 2 diabetes cases by BMI may help identify additional risk variants and that lean cases may have a stronger genetic predisposition to type 2 diabetes.


Human Molecular Genetics | 2010

Genetic variants at 2q24 are associated with susceptibility to type 2 diabetes

Lu Qi; Marilyn C. Cornelis; Peter Kraft; Kristopher J. Stanya; W.H. Linda Kao; James S. Pankow; Josée Dupuis; Jose C. Florez; Caroline S. Fox; Guillaume Paré; Qi Sun; Cynthia J. Girman; Cathy C. Laurie; Daniel B. Mirel; Teri A. Manolio; Daniel I. Chasman; Eric Boerwinkle; Paul M. Ridker; David J. Hunter; James B. Meigs; Chih-Hao Lee; Rob M. van Dam; Frank B. Hu

To identify type 2 diabetes (T2D) susceptibility loci, we conducted genome-wide association (GWA) scans in nested case-control samples from two prospective cohort studies, including 2591 patients and 3052 controls of European ancestry. Validation was performed in 11 independent GWA studies of 10,870 cases and 73,735 controls. We identified significantly associated variants near RBMS1 and ITGB6 genes at 2q24, best-represented by SNP rs7593730 (combined OR=0.90, 95% CI=0.86-0.93; P=3.7x10(-8)). The frequency of the risk-lowering allele T is 0.23. Variants in this region were nominally related to lower fasting glucose and HOMA-IR in the MAGIC consortium (P<0.05). These data suggest that the 2q24 locus may influence the T2D risk by affecting glucose metabolism and insulin resistance.


PLOS Genetics | 2010

Identification of New Genetic Risk Variants for Type 2 Diabetes

Xiao-Ou Shu; Jirong Long; Qiuyin Cai; Lu Qi; Yong-Bing Xiang; Yoon Shin Cho; E. Shyong Tai; Xiangyang Li; Xu Lin; Wong-Ho Chow; Min Jin Go; Mark Seielstad; Wei Bao; Huaixing Li; Marilyn C. Cornelis; Kai-Bei Yu; Wanqing Wen; Jiajun Shi; Bok-Ghee Han; Xueling Sim; Liegang Liu; Qibin Qi; Hyung-Lae Kim; Daniel P.K. Ng; Jong-Young Lee; Young-Jin Kim; Chun-Chun Li; Yu-Tang Gao; Wei-Wei Zheng; Frank B. Hu

Although more than 20 genetic susceptibility loci have been reported for type 2 diabetes (T2D), most reported variants have small to moderate effects and account for only a small proportion of the heritability of T2D, suggesting that the majority of inter-person genetic variation in this disease remains to be determined. We conducted a multistage, genome-wide association study (GWAS) within the Asian Consortium of Diabetes to search for T2D susceptibility markers. From 590,887 SNPs genotyped in 1,019 T2D cases and 1,710 controls selected from Chinese women in Shanghai, we selected the top 2,100 SNPs that were not in linkage disequilibrium (r2<0.2) with known T2D loci for in silico replication in three T2D GWAS conducted among European Americans, Koreans, and Singapore Chinese. The 5 most promising SNPs were genotyped in an independent set of 1,645 cases and 1,649 controls from Shanghai, and 4 of them were further genotyped in 1,487 cases and 3,316 controls from 2 additional Chinese studies. Consistent associations across all studies were found for rs1359790 (13q31.1), rs10906115 (10p13), and rs1436955 (15q22.2) with P-values (per allele OR, 95%CI) of 6.49×10−9 (1.15, 1.10–1.20), 1.45×10−8 (1.13, 1.08–1.18), and 7.14×10−7 (1.13, 1.08–1.19), respectively, in combined analyses of 9,794 cases and 14,615 controls. Our study provides strong evidence for a novel T2D susceptibility locus at 13q31.1 and the presence of new independent risk variants near regions (10p13 and 15q22.2) reported by previous GWAS.

Collaboration


Dive into the Lu Qi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qibin Qi

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tao Huang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

George A. Bray

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge