Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark A. Atkinson is active.

Publication


Featured researches published by Mark A. Atkinson.


The Lancet | 2001

Type 1 diabetes: new perspectives on disease pathogenesis and treatment

Mark A. Atkinson; George S. Eisenbarth

As our knowledge of type 1 (insulin-dependent) diabetes increases, so does our appreciation for the pathogenic complexity of this disease and the challenges associated with its treatment. Many new concepts about the pathogenesis of this disorder have arisen. The role of genetics versus environment in disease formation has been questioned, and the basis on which type 1 diabetes is characterised and diagnosed is the subject of much debate. Additionally, the care and treatment of patients with type 1 diabetes has seen a rapid evolution; with genetically engineered insulins, glucose monitoring devices, and algorithms all contributing to a decrease in disease-related complications. We focus this seminar on these changing views, and offer a new perspective on our understanding of the pathogenesis of type 1 diabetes and on principles for therapeutic management of patients with this disorder.


Nature | 1998

Extreme Th1 bias of invariant Vα24JαQ T cells in type 1 diabetes

Wilson Sb; Sally C. Kent; Patton Kt; Orban T; Jackson Ra; Mark A. Exley; Steven A. Porcelli; Desmond A. Schatz; Mark A. Atkinson; Steven P. Balk; Jack L. Strominger; David A. Hafler

Type 1 diabetes (insulin-dependent diabetes mellitus, IDDM) is a disease controlled by the major histocompatibility complex (MHC) which results from T-cell-mediated destruction of pancreatic β-cells. The incomplete concordance in identical twins and the presence of autoreactive T cells and autoantibodies in individuals who do not develop diabetes suggest that other abnormalities must occur in the immune system for disease to result,. We therefore investigated a series of at-risk non-progressors and type1 diabetic patients (including five identical twin/triplet sets discordant for disease). The diabetic siblings had lower frequencies of CD4−CD8− Vα24JαQ+ T cells compared with their non-diabetic sibling. All 56 Vα24JαQ+ clones isolated from the diabetic twins/triplets secreted only interferon (IFN)-γ upon stimulation; in contrast, 76 of 79 clones from the at-risk non-progressors and normals secreted both interleukin (IL)-4 and IFN-γ. Half of the at-risk non-progressors had high serum levels of IL-4 and IFN-γ. These results support a model for IDDM in which Th1-cell-mediated tissue damage is initially regulated by Vα24JαQ+ T cells producing both cytokines; the loss of their capacity to secrete IL-4 is correlated with IDDM.


The Lancet | 2014

Type 1 diabetes.

Mark A. Atkinson; George S. Eisenbarth; Aaron W. Michels

Over the past decade, knowledge of the pathogenesis and natural history of type 1 diabetes has grown substantially, particularly with regard to disease prediction and heterogeneity, pancreatic pathology, and epidemiology. Technological improvements in insulin pumps and continuous glucose monitors help patients with type 1 diabetes manage the challenge of lifelong insulin administration. Agents that show promise for averting debilitating disease-associated complications have also been identified. However, despite broad organisational, intellectual, and fiscal investments, no means for preventing or curing type 1 diabetes exists, and, globally, the quality of diabetes management remains uneven. This Seminar discusses current progress in epidemiology, pathology, diagnosis, and treatment of type 1 diabetes, and prospects for an improved future for individuals with this disease.


Nature Medicine | 1999

The NOD mouse model of type 1 diabetes: as good as it gets?

Mark A. Atkinson; Edward H. Leiter

Of the two well-known rodent models of human type 1 diabetes (the non-obese diabetic mouse and the BioBreeding rat) the mouse has become the model of choice. Here the authors re-examine the value of this mouse model as a tool for understanding human diabetes and for testing potential therapies, reviewing both strengths and weaknesses.


Journal of Experimental Medicine | 2007

MyD88-dependent expansion of an immature GR-1+CD11b+ population induces T cell suppression and Th2 polarization in sepsis

Matthew J. Delano; Philip O. Scumpia; Jason S. Weinstein; Dominique Coco; Srinivas Nagaraj; Kindra M. Kelly-Scumpia; Kerri O'Malley; James L. Wynn; Svetlana Antonenko; Samer Z. Al-Quran; Ryan Swan; Chun-Shiang Chung; Mark A. Atkinson; Reuben Ramphal; Dmitry I. Gabrilovich; Wesley H. Reeves; Alfred Ayala; Joseph S. Phillips; Drake LaFace; Paul G. Heyworth; Michael Clare-Salzler; Lyle L. Moldawer

Polymicrobial sepsis alters the adaptive immune response and induces T cell suppression and Th2 immune polarization. We identify a GR-1+CD11b+ population whose numbers dramatically increase and remain elevated in the spleen, lymph nodes, and bone marrow during polymicrobial sepsis. Phenotypically, these cells are heterogeneous, immature, predominantly myeloid progenitors that express interleukin 10 and several other cytokines and chemokines. Splenic GR-1+ cells effectively suppress antigen-specific CD8+ T cell interferon (IFN) γ production but only modestly suppress antigen-specific and nonspecific CD4+ T cell proliferation. GR-1+ cell depletion in vivo prevents both the sepsis-induced augmentation of Th2 cell–dependent and depression of Th1 cell–dependent antibody production. Signaling through MyD88, but not Toll-like receptor 4, TIR domain–containing adaptor-inducing IFN-β, or the IFN-α/β receptor, is required for complete GR-1+CD11b+ expansion. GR-1+CD11b+ cells contribute to sepsis-induced T cell suppression and preferential Th2 polarization.


Journal of Clinical Investigation | 1992

Autoimmunity to two forms of glutamate decarboxylase in insulin-dependent diabetes mellitus.

Daniel L. Kaufman; M.G Erlander; Michael Clare-Salzler; Mark A. Atkinson; N K Maclaren; Allan J. Tobin

Insulin-dependent diabetes mellitus (IDDM) is thought to result from the autoimmune destruction of the insulin-producing beta cells of the pancreas. Years before IDDM symptoms appear, we can detect autoantibodies to one or both forms of glutamate decarboxylase (GAD65 and GAD67), synthesized from their respective cDNAs in a bacterial expression system. Individual IDDM sera show distinctive profiles of epitope recognition, suggesting different humoral immune responses. Although the level of GAD autoantibodies generally decline after IDDM onset, patients with IDDM-associated neuropathies have high levels of antibodies to GAD, years after the appearance of clinical IDDM. We note a striking sequence similarity between the two GADs and Coxsackievirus, a virus that has been associated with IDDM both in humans and in experimental animals. This similarity suggests that molecular mimicry may play a role in the pathogenesis of IDDM.


The ISME Journal | 2011

Toward defining the autoimmune microbiome for type 1 diabetes

Adriana Giongo; Kelsey A. Gano; David B. Crabb; Nabanita Mukherjee; Luis L Novelo; George Casella; Jennifer C. Drew; Jorma Ilonen; Mikael Knip; Heikki Hyöty; Riitta Veijola; Tuula Simell; Olli Simell; Josef Neu; Clive Wasserfall; Desmond A. Schatz; Mark A. Atkinson; Eric W. Triplett

Several studies have shown that gut bacteria have a role in diabetes in murine models. Specific bacteria have been correlated with the onset of diabetes in a rat model. However, it is unknown whether human intestinal microbes have a role in the development of autoimmunity that often leads to type 1 diabetes (T1D), an autoimmune disorder in which insulin-secreting pancreatic islet cells are destroyed. High-throughput, culture-independent approaches identified bacteria that correlate with the development of T1D-associated autoimmunity in young children who are at high genetic risk for this disorder. The level of bacterial diversity diminishes overtime in these autoimmune subjects relative to that of age-matched, genotype-matched, nonautoimmune individuals. A single species, Bacteroides ovatus, comprised nearly 24% of the total increase in the phylum Bacteroidetes in cases compared with controls. Conversely, another species in controls, represented by the human firmicute strain CO19, represented nearly 20% of the increase in Firmicutes compared with cases overtime. Three lines of evidence are presented that support the notion that, as healthy infants approach the toddler stage, their microbiomes become healthier and more stable, whereas, children who are destined for autoimmunity develop a microbiome that is less diverse and stable. Hence, the autoimmune microbiome for T1D may be distinctly different from that found in healthy children. These data also suggest bacterial markers for the early diagnosis of T1D. In addition, bacteria that negatively correlated with the autoimmune state may prove to be useful in the prevention of autoimmunity development in high-risk children.


Journal of Clinical Investigation | 1994

Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes.

Mark A. Atkinson; Mark A. Bowman; Lalita Campbell; Bethany L. Darrow; Daniel L. Kaufman; Noel K. Maclaren

Insulin-dependent diabetes (IDD) results from the autoimmune destruction of the insulin-producing pancreatic beta cells. Autoreactive T-lymphocytes are thought to play a pivotal role in the pathogenesis of IDD; however, the target antigens of these cells, as well as the inductive events in the disease, are unclear. PBMC in persons with or at increased risk for IDD show elevated reactivity to the beta cell enzyme glutamate decarboxylase (GAD). To identify the T-lymphocyte-reactive determinants of GAD, an overlapping set of synthetic peptides was used to stimulate the PBMC from these individuals, PBMC responsiveness to GAD peptides was not restricted to those with IDD, and a number of peptides elicited responses in PBMC. However, the major determinant of GAD recognized by persons at increased risk for IDD was amino acids 247-279, a region which has significant sequence similarity to the P2-C protein of Coxsackie B virus (47% of 15 increased risk [islet cell autoantibody-positive relatives]; 25% of 16 newly diagnosed IDD patients; and 0% of 13 healthy control subjects). Responses to tetanus and insulin antigens were not different between the study groups. In addition, PBMC from individuals responding to GAD peptides within 247-279 also responded to a Coxsackie viral peptide (i.e., P2-C amino acids 32-47), an observation supporting potential molecular mimicry in this immune response. Although the role of environmental agents in the pathogenesis of the disease remains unclear, these cellular immunological findings support the epidemiological evidence suggesting an inductive role for enteroviruses like Coxsackie B in the autoimmunity underlying IDD.


Nature Genetics | 2007

Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes

Christopher E. Lowe; Jason D. Cooper; Todd M. Brusko; Neil M Walker; Deborah J. Smyth; Rebecca Bailey; Kirsi Bourget; Vincent Plagnol; Sarah Field; Mark A. Atkinson; David G. Clayton; Linda S. Wicker; John A. Todd

Genome-wide association studies are now identifying disease-associated chromosome regions. However, even after convincing replication, the localization of the causal variant(s) requires comprehensive resequencing, extensive genotyping and statistical analyses in large sample sets leading to targeted functional studies. Here, we have localized the type 1 diabetes (T1D) association in the interleukin 2 receptor alpha (IL2RA) gene region to two independent groups of SNPs, spanning overlapping regions of 14 and 40 kb, encompassing IL2RA intron 1 and the 5′ regions of IL2RA and RBM17 (odds ratio = 2.04, 95% confidence interval = 1.70–2.45; P = 1.92 × 10−28; control frequency = 0.635). Furthermore, we have associated IL2RA T1D susceptibility genotypes with lower circulating levels of the biomarker, soluble IL-2RA (P = 6.28 × 10−28), suggesting that an inherited lower immune responsiveness predisposes to T1D.


Journal of Experimental Medicine | 2012

Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients

Ken Coppieters; Francesco Dotta; Natalie Amirian; Peter D. Campbell; Thomas W. H. Kay; Mark A. Atkinson; Bart O. Roep; Matthias von Herrath

In situ tetramer staining reveals the presence of islet antigen-reactive CD8+ T cells in pancreatic islets from deceased type 1 diabetes patients.

Collaboration


Dive into the Mark A. Atkinson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terence R. Flotte

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge