Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter G. Kremsner is active.

Publication


Featured researches published by Peter G. Kremsner.


The Lancet | 2002

Amodiaquine-artesunate versus amodiaquine for uncomplicated Plasmodium falciparum malaria in African children: a randomised, multicentre trial

Martin Adjuik; P. Agnamey; Abdel Babiker; Steffen Borrmann; Philippe Brasseur; M. Cisse; F. Cobelens; S. Diallo; J. F. Faucher; Paul Garner; S. Gikunda; Peter G. Kremsner; S. Krishna; Bertrand Lell; M. Loolpapit; Pierre-Blaise Matsiegui; Michel A. Missinou; J. Mwanza; F. Ntoumi; Piero Olliaro; P. Osimbo; P. Rezbach; E. Some; W. R. J. Taylor

BACKGROUND Increasing drug resistance limits the choice of efficacious chemotherapy against Plasmodium falciparum malaria in Africa. Amodiaquine still retains efficacy against P falciparum in many African countries. We assessed the safety, treatment efficacy, and effect on gametocyte carriage of adding artesunate to amodiaquine in three randomised trials in Kenya, Sénégal, and Gabon. METHODS We enrolled 941 children (400 in Kenya, 321 in Sénégal, and 220 in Gabon) who were 10 years or older and who had uncomplicated P falciparum malaria. Patients were randomly assigned amodiaquine (10 mg/kg per day for 3 days) plus artesunate (4 mg/kg per day for 3 days) or amodiaquine (as above) and placebo (for 3 days). The primary endpoints were parasitological cure rates at days 14 and 28. Analysis was by intention to treat and by an evaluability method. FINDINGS Both regimens were well tolerated. Six patients in the amodiaquine-artesunate group and five in the amodiaquine group developed early, drug-induced vomiting, necessitating alternative treatment. By intention-to-treat analysis, the day-14 cure rates for amodiaquine-artesunate versus amodiaquine were: 175/192 (91%) versus 140/188 (74%) in Kenya (D=16.7% [95% CI 9.3-24.1], p<0.0001), 148/160 (93%) versus 147/157 (94%) in Sénégal (-1.1% [-6.7 to 4.5], p=0.7), and 92/94 (98%) versus 86/96 (90%) in Gabon (8.3% [1.5-15.1], p=0.02). The corresponding rates for day 28 were: 123/180 (68%) versus 75/183 (41%) in Kenya (27.3% [17.5-37.2], p<0.0001), 130/159 (82%) versus 123/156 (79%) in Sénégal (2.9% [-5.9 to 11.7], p=0.5), and 80/94 (85%) versus 70/98 (71%) in Gabon (13.7% [2.2-25.2], p=0.02). Similar rates were obtained by evaluability analysis. INTERPRETATION The combination of artesunate and amodiaquine improved treatment efficacy in Gabon and Kenya, and was equivalent in Sénégal. Amodiaquine-artesunate is a potential combination for use in Africa. Further investigations to assess the potential effect on the evolution of drug resistance, disease transmission, and safety of amodiaquine-artesunate are warranted.


Nature Medicine | 2000

A principal target of human immunity to malaria identified by molecular population genetic and immunological analyses

David J. Conway; David R. Cavanagh; Kazuyuki Tanabe; Cally Roper; Zsuzsanna S. Mikes; Naoko Sakihama; Kalifa Bojang; Ayoade M. J. Oduola; Peter G. Kremsner; David E. Arnot; Brian Greenwood; Jana S. McBride

New strategies are required to identify the most important targets of protective immunity in complex eukaryotic pathogens. Natural selection maintains allelic variation in some antigens of the malaria parasite Plasmodium falciparum. Analysis of allele frequency distributions could identify the loci under most intense selection. The merozoite surface protein 1 (Msp1) is the most-abundant surface component on the erythrocyte-invading stage of P. falciparum. Immunization with whole Msp1 has protected monkeys completely against homologous and partially against non-homologous parasite strains. The single-copy msp1 gene, of about 5 kilobases, has highly divergent alleles with stable frequencies in endemic populations. To identify the region of msp1 under strongest selection to maintain alleles within populations, we studied multiple intragenic sequence loci in populations in different regions of Africa and Southeast Asia. On both continents, the locus with the lowest inter-population variance in allele frequencies was block 2, indicating selection in this part of the gene. To test the hypothesis of immune selection, we undertook a large prospective longitudinal cohort study. This demonstrated that serum IgG antibodies against each of the two most frequent allelic types of block 2 of the protein were strongly associated with protection from P. falciparum malaria.


The Journal of Infectious Diseases | 1999

Interferon-γ Responses Are Associated with Resistance to Reinfection with Plasmodium falciparum in Young African Children

Adrian J. F. Luty; Bertrand Lell; Ruprecht Schmidt-Ott; Leopold G. Lehman; Doris Luckner; Bernhard Greve; Peter Matousek; Klaus Herbich; Daniela Schmid; Florence Migot-Nabias; Philippe Deloron; Ruth S. Nussenzweig; Peter G. Kremsner

The contribution of T cell-mediated responses was studied with regard to resistance to reinfection in groups of Gabonese children participating in a prospective study of severe and mild malaria due to infection with Plasmodium falciparum. In those admitted with mild malaria, but not in those with severe malaria, production of IFN-gamma by peripheral blood mononuclear cells (PBMC) in response to either liver-stage or merozoite antigen peptides was associated with significantly delayed first reinfections and with significantly lower rates of reinfection. Proliferative or tumor necrosis factor responses to the same peptides showed no such associations. Production of interferon-gamma by PBMC in response to sporozoite and merozoite antigen peptides was observed in a higher proportion of those presenting with mild malaria. Differences in the Th1/Th2 cytokine balance may be linked to the ability to control parasite multiplication in these young children, helping to explain the marked differences observed in both susceptibility to infection as well as in clinical presentation.


The Lancet | 2009

Efficacy and safety of intermittent preventive treatment with sulfadoxine-pyrimethamine for malaria in African infants: a pooled analysis of six randomised, placebo-controlled trials

John J. Aponte; David Schellenberg; Andrea Egan; Alasdair Breckenridge; Ilona Carneiro; Julia Critchley; Ina Danquah; Alexander Dodoo; Robin Kobbe; Bertrand Lell; Jürgen May; Zul Premji; Sergi Sanz; Esperanza Sevene; Rachida Soulaymani-Becheikh; Peter Winstanley; Samuel Adjei; Sylvester D. Anemana; Daniel Chandramohan; Saadou Issifou; Frank P. Mockenhaupt; Seth Owusu-Agyei; Brian Greenwood; Martin P. Grobusch; Peter G. Kremsner; Eusebio Macete; Hassan Mshinda; Robert D. Newman; Laurence Slutsker; Marcel Tanner

BACKGROUND Intermittent preventive treatment (IPT) is a promising strategy for malaria control in infants. We undertook a pooled analysis of the safety and efficacy of IPT in infants (IPTi) with sulfadoxine-pyrimethamine in Africa. METHODS We pooled data from six double-blind, randomised, placebo-controlled trials (undertaken one each in Tanzania, Mozambique, and Gabon, and three in Ghana) that assessed the efficacy of IPTi with sulfadoxine-pyrimethamine. In all trials, IPTi or placebo was given to infants at the time of routine vaccinations delivered by WHOs Expanded Program on Immunization. Data from the trials for incidence of clinical malaria, risk of anaemia (packed-cell volume <25% or haemoglobin <80 g/L), and incidence of hospital admissions and adverse events in infants up to 12 months of age were reanalysed by use of standard outcome definitions and time periods. Analysis was by modified intention to treat, including all infants who received at least one dose of IPTi or placebo. FINDINGS The six trials provided data for 7930 infants (IPTi, n=3958; placebo, n=3972). IPTi had a protective efficacy of 30.3% (95% CI 19.8-39.4, p<0.0001) against clinical malaria, 21.3% (8.2-32.5, p=0.002) against the risk of anaemia, 38.1% (12.5-56.2, p=0.007) against hospital admissions associated with malaria parasitaemia, and 22.9% (10.0-34.0, p=0.001) against all-cause hospital admissions. There were 56 deaths in the IPTi group compared with 53 in the placebo group (rate ratio 1.05, 95% CI 0.72-1.54, p=0.79). One death, judged as possibly related to IPTi because it occurred 19 days after a treatment dose, was subsequently attributed to probable sepsis. Four of 676 non-fatal hospital admissions in the IPTi group were deemed related to study treatment compared with five of 860 in the placebo group. None of three serious dermatological adverse events in the IPTi group were judged related to study treatment compared with one of 13 in the placebo group. INTERPRETATION IPTi with sulfadoxine-pyrimethamine was safe and efficacious across a range of malaria transmission settings, suggesting that this intervention is a useful contribution to malaria control. FUNDING Bill & Melinda Gates Foundation.


The Journal of Infectious Diseases | 2000

Reduced Interleukin-12 and Transforming Growth Factor—β1 in Severe Childhood Malaria: Relationship of Cytokine Balance with Disease Severity

Douglas J. Perkins; J. Brice Weinberg; Peter G. Kremsner

Interleukin (IL)-12 and transforming growth factor (TGF)-beta1 regulate the balance between pro- and anti-inflammatory cytokines in animal models of malaria. Since the cytokine balance may be an important determinant of whether a protective or a pathogenic immune response develops, plasma cytokine ratios were examined in Gabonese children with various degrees of malarial severity. Severe disease was characterized by high-density parasitemia and severe anemia. IL-12 and TGF-beta1 were significantly lower, whereas tumor necrosis factor (TNF)-alpha and IL-10 were significantly higher in children with severe malaria. The ratios of TGF-beta1/IL-12 and IL-10/IL-12 were significantly higher in the severe, compared with the mild, malaria group. In contrast, ratios of TGF-beta1/TNF-alpha and IL-10/TNF-alpha were significantly lower in the severe malaria group. These results suggest that the inflammatory cascade in severe malaria is characterized by suppression of the protective effects of TGF-beta1 and IL-12, and that overproduction of TNF-alpha may promote deleterious effects, such as severe anemia.


Malaria Journal | 2005

Severe falciparum malaria in Gabonese children: clinical and laboratory features.

Arnaud Dzeing-Ella; Pascal Cnze Obiang; Rose Tchoua; Timothy Planche; Béatrice Mboza; Monique Mbounja; Ulrich Muller-Roemer; Joseph N. Jarvis; Eric Kendjo; Edouard Ngou-Milama; Peter G. Kremsner; Sanjeev Krishna; Maryvonne Kombila

BackgroundMalaria continues to claim one to two million lives a year, mainly those of children in sub-Saharan Africa. Reduction in mortality depends, in part, on improving the quality of hospital care, the training of healthcare workers and improvements in public health. This study examined the prognostic indicators of severe falciparum malaria in Gabonese children.MethodsAn observational study examining the clinical presentations and laboratory features of severe malaria was conducted at the Centre Hospitalier de Libreville, Gabon over two years. Febrile children aged from 0 to 10 years with Plasmodium falciparum infection and one or more features of severe malaria were enrolled.ResultsMost children presenting with severe falciparum malaria were less than 5 years (92.3% of 583 cases). Anaemia was the most frequent feature of severe malaria (67.8% of cases), followed by respiratory distress (31%), cerebral malaria (24%) hyperlactataemia (16%) and then hypoglycaemia (10%). Anaemia was more common in children under 18 months old, while cerebral malaria usually occurred in those over 18 months. The overall case fatality rate was 9%. The prognostic indicators with the highest case fatality rates were coma/seizures, hyperlactataemia and hypoglycaemia, and the highest case fatality rate was in children with all three of these features.ConclusionsPrompt and appropriate, classification and treatment of malaria helps identify the most severely ill children and aids early and appropriate management of the severely ill child.


Infection and Immunity | 2000

Blood group A antigen is a coreceptor in Plasmodium falciparum rosetting.

Antonio Barragan; Peter G. Kremsner; Mats Wahlgren; Johan Carlson

ABSTRACT The malaria parasite Plasmodium falciparum utilizes molecules present on the surface of uninfected red blood cells (RBC) for rosette formation, and a dependency on ABO antigens has been previously shown. In this study, the antirosetting effect of immune sera was related to the blood group of the infected human host. Sera from malaria-immune blood group A (or B) individuals were less prone to disrupt rosettes from clinical isolates of blood group A (or B) patients than to disrupt rosettes from isolates of blood group O patients. All fresh clinical isolates and laboratory strains exhibited distinct ABO blood group preferences, indicating that utilization of blood group antigens is a general feature of P. falciparumrosetting. Soluble A antigen strongly inhibited rosette formation when the parasite was cultivated in A RBC, while inhibition by glycosaminoglycans decreased. Furthermore, a soluble A antigen conjugate bound to the cell surface of parasitized RBC. Selective enzymatic digestion of blood group A antigen from the uninfected RBC surfaces totally abolished the preference of the parasite to form rosettes with these RBC, but rosettes could still form. Altogether, present data suggest an important role for A and B antigens as coreceptors in P. falciparum rosetting.


The New England Journal of Medicine | 2016

A Worldwide Map of Plasmodium falciparum K13-Propeller Polymorphisms.

Didier Ménard; Nimol Khim; Johann Beghain; Ayola A. Adegnika; Mohammad Shafiul-Alam; Olukemi K. Amodu; Ghulam Rahim-Awab; Céline Barnadas; Antoine Berry; Yap Boum; Maria D. Bustos; Jun Cao; Jun-Hu Chen; Louis Collet; Liwang Cui; Garib-Das Thakur; Alioune Dieye; Djibrine Djalle; Monique A. Dorkenoo; Carole E. Eboumbou-Moukoko; Fe-Esperanza-Caridad J. Espino; Thierry Fandeur; Maria-Fatima Ferreira-da-Cruz; Abebe A. Fola; Hans-Peter Fuehrer; Abdillahi M. Hassan; Sócrates Herrera; Bouasy Hongvanthong; Sandrine Houzé; Maman L. Ibrahim

BACKGROUND Recent gains in reducing the global burden of malaria are threatened by the emergence of Plasmodium falciparum resistance to artemisinins. The discovery that mutations in portions of a P. falciparum gene encoding kelch (K13)-propeller domains are the major determinant of resistance has provided opportunities for monitoring such resistance on a global scale. METHODS We analyzed the K13-propeller sequence polymorphism in 14,037 samples collected in 59 countries in which malaria is endemic. Most of the samples (84.5%) were obtained from patients who were treated at sentinel sites used for nationwide surveillance of antimalarial resistance. We evaluated the emergence and dissemination of mutations by haplotyping neighboring loci. RESULTS We identified 108 nonsynonymous K13 mutations, which showed marked geographic disparity in their frequency and distribution. In Asia, 36.5% of the K13 mutations were distributed within two areas--one in Cambodia, Vietnam, and Laos and the other in western Thailand, Myanmar, and China--with no overlap. In Africa, we observed a broad array of rare nonsynonymous mutations that were not associated with delayed parasite clearance. The gene-edited Dd2 transgenic line with the A578S mutation, which expresses the most frequently observed African allele, was found to be susceptible to artemisinin in vitro on a ring-stage survival assay. CONCLUSIONS No evidence of artemisinin resistance was found outside Southeast Asia and China, where resistance-associated K13 mutations were confined. The common African A578S allele was not associated with clinical or in vitro resistance to artemisinin, and many African mutations appear to be neutral. (Funded by Institut Pasteur Paris and others.).


Cellular Physiology and Biochemistry | 2009

Accelerated Clearance of Plasmodium-infected Erythrocytes in Sickle Cell Trait and Annexin-A7 Deficiency

Philipp A. Lang; Ravi S. Kasinathan; Verena B. Brand; Christophe Duranton; Camelia Lang; Saisudha Koka; Ekaterina Shumilina; Daniela S. Kempe; Valerie Tanneur; Ahmad Akel; Karl S. Lang; Michael Föller; Jürgen F. J. Kun; Peter G. Kremsner; Sebastian Wesselborg; Stefan Laufer; Christoph S. Clemen; Claudia Herr; Angelika A. Noegel; Thomas Wieder; Erich Gulbins; Florian Lang; Stephan M. Huber

The course of malaria does not only depend on the virulence of the parasite Plasmodium but also on properties of host erythrocytes. Here, we show that infection of erythrocytes from human sickle cell trait (HbA/S) carriers with ring stages of P. falciparum led to significantly enhanced PGE2 formation, Ca2+ permeability, annexin-A7 degradation, phosphatidylserine (PS) exposure at the cell surface, and clearance by macrophages. P. berghei-infected erythrocytes from annexin-A7-deficient (annexin-A7-/-) mice were more rapidly cleared than infected wildtype cells. Accordingly, P. berghei-infected annexin-A7-/- mice developed less parasitemia than wildtype mice. The cyclooxygenase inhibitor aspirin decreased erythrocyte PS exposure in infected annexin-A7-/- mice and abolished the differences of parasitemia and survival between the genotypes. Conversely, the PGE2-agonist sulprostone decreased parasitemia and increased survival of wild type mice. In conclusion, PS exposure on erythrocytes results in accelerated clearance of Plasmodium ring stage-infected HbA/S or annexin-A7-/- erythrocytes and thus confers partial protection against malaria in vivo.


PLOS ONE | 2012

Schistosomes Induce Regulatory Features in Human and Mouse CD1d(hi) B Cells: Inhibition of Allergic Inflammation by IL-10 and Regulatory T Cells

Luciën E. P. M. van der Vlugt; Lucja A. Labuda; Arifa Ozir-Fazalalikhan; Ellen Lievers; Anouk K. Gloudemans; Kit-Yeng Liu; Tom A. Barr; Tim Sparwasser; Louis Boon; Ulysse Ateba Ngoa; Eliane Ngoune Feugap; Ayola A. Adegnika; Peter G. Kremsner; David Gray; Maria Yazdanbakhsh; Hermelijn H. Smits

Chronic helminth infections, such as schistosomes, are negatively associated with allergic disorders. Here, using B cell IL-10-deficient mice, Schistosoma mansoni-mediated protection against experimental ovalbumin-induced allergic airway inflammation (AAI) was shown to be specifically dependent on IL-10-producing B cells. To study the organs involved, we transferred B cells from lungs, mesenteric lymph nodes or spleen of OVA-infected mice to recipient OVA-sensitized mice, and showed that both lung and splenic B cells reduced AAI, but only splenic B cells in an IL-10-dependent manner. Although splenic B cell protection was accompanied by elevated levels of pulmonary FoxP3+ regulatory T cells, in vivo ablation of FoxP3+ T cells only moderately restored AAI, indicating an important role for the direct suppressory effect of regulatory B cells. Splenic marginal zone CD1d+ B cells proved to be the responsible splenic B cell subset as they produced high levels of IL-10 and induced FoxP3+ T cells in vitro. Indeed, transfer of CD1d+ MZ-depleted splenic B cells from infected mice restored AAI. Markedly, we found a similarly elevated population of CD1dhi B cells in peripheral blood of Schistosoma haematobium-infected Gabonese children compared to uninfected children and these cells produced elevated levels of IL-10. Importantly, the number of IL-10-producing CD1dhi B cells was reduced after anti-schistosome treatment. This study points out that in both mice and men schistosomes have the capacity to drive the development of IL-10-producing regulatory CD1dhi B cells and furthermore, these are instrumental in reducing experimental allergic inflammation in mice.

Collaboration


Dive into the Peter G. Kremsner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Ramharter

Bernhard Nocht Institute for Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge